Lee et al. Experimental & Translational Stroke Medicine 2012, 4:16
http://www.etsmjournal.com/content/4/1/16

EXPERIMENTAL & TRANSLATIONAL
STROKE MEDICINE

RESEARCH

Open Access

Neuroprotective effect of an angiotensin receptor
type 2 agonist following cerebral ischemia

in vitro and in vivo

Seyoung Lee', Vanessa H Brait', Thiruma V Arumugam?, Megan A Evans', Hyun Ah Kim', Robert E Widdop',

Grant R Drummond', Christopher G Sobey' " and Emma S Jones

1t

Abstract

mouse model of cerebral ischemia.

edema volume were analysed.

Neuroprotection, Stroke

Background: Intracerebral administration of the angiotensin Il type 2 receptor (AT,R) agonist, CGP42112, is
neuroprotective in a rat model of ischemic stroke. To explore further its possible cellular target(s) and therapeutic
utility, we firstly examined whether CGP42112 may exert direct protective effects on primary neurons following
glucose deprivation in vitro. Secondly, we tested whether CGP42112 is effective when administered systemically in a

Methods: Primary cortical neurons were cultured from E17 C57BI6 mouse embryos for 9 d, exposed to glucose
deprivation for 24 h alone or with drug treatments, and percent cell survival assessed using trypan blue exclusion.
Ischemic stroke was induced in adult male C57BI6 mice by middle cerebral artery occlusion for 30 min, followed by
reperfusion for 23.5 h. Neurological assessment was performed and then mice were euthanized and infarct and

Results: During glucose deprivation, CGP42112 (1x10® M and 1x10” M) reduced cell death by ~30%, an effect that
was prevented by the AT,R antagonist, PD123319 (1x10°° M). Neuroprotection by CGP42112 was lost at a higher
concentration (1x10° M) but was unmasked by co-application with the AT,R antagonist, candesartan (1x107 M). By
contrast, Compound 21 (1x10® M to 1x10° M), a second AT,R agonist, had no effect on neuronal survival. Mice
treated with CGP42112 (1 mg/kg i.p.) after cerebral ischemia had improved functional outcomes over
vehicle-treated mice as well as reduced total and cortical infarct volumes.

Conclusions: These results indicate that CGP42112 can directly protect neurons from ischemia-like injury in vitro via
activation of AT,Rs, an effect opposed by AT;R activation at high concentrations. Furthermore, systemic
administration of CGP42112 can reduce functional deficits and infarct volume following cerebral ischemia in vivo.
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Introduction

Stroke is the world’s second most common cause of
death and a leading cause of long-term disability in
adults [1]. Currently, there are very few safe and effective
treatment options available for patients following stroke
[2] and hence there is a great need to develop new ther-
apies that may improve stroke outcome. It is conceivable
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that targeting elements of the renin-angiotensin system
(RAS) may provide neuroprotection prior to and/or fol-
lowing stroke [3-11].

The major peptide of the RAS is angiotensin II (Ang
II), which acts with equal affinity at two membrane-
bound receptors, the angiotensin type 1 receptor (AT;R)
and the type 2 receptor (AT,R). It is well established that
excessive stimulation of the AT;R by Ang II mediates
biologically detrimental actions in the setting of cerebro-
vascular disease [3,12-14], whereas activation of the
AT,R may at least partly offset the effects of AT;R
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stimulation and is associated with a protective function
[15]. In addition, blockade of the AT;R may be protect-
ive at least in part because it results in greater binding
to and activation of the AT,R by Ang II [3-5]. A number
of clinical trials have demonstrated the beneficial effects
of sartan class drugs (AT R antagonists) such as cande-
sartan and eprosartan, given prior to and following
stroke [16,17].

The AT,R is the predominant angiotensin receptor
subtype expressed in fetal organs, and its expression is
downregulated following birth [9,18]. Interestingly, re-
cent studies have shown that under pathological condi-
tions such as ischemic insult, AT,R expression may be
upregulated [7,9] and it may play an important role in
the growth, repair and regeneration of neuronal tissue.

To date only one study has tested for a neuroprotec-
tive effect of direct AT,R activation using a selective
AT,R agonist in the setting of stroke, and it suggested
that direct AT,R activation is beneficial during ischemic
stroke in spontaneously hypertensive rats subjected to
cerebral ischemia [8]. Specifically, intracerebral adminis-
tration of the AT,R agonist, CGP42112, prior to ische-
mia resulted in a reduced infarct volume at 72 h [8].
This protective effect of CGP42112 was abolished by ad-
ministration of PD123319 (an AT,R antagonist), con-
firming a role for AT,R. In the brain, AT,;Rs are known
to be expressed in neurons [7] and also in vascular cells
[5], although the target cell types for the protective ac-
tion of CGP42112 remain unknown.

In the present study, we firstly tested the hypothesis
that selective AT,R activation is directly neuroprotective
in vitro using primary cortical neuron cultures deprived
of glucose. Secondly, we tested whether CGP42112 may
be effective in limiting neurological deficit when admi-
nistered systemically following cerebral ischemia in a
mouse model of stroke.

Materials and methods

Animals

All animal experiments were performed in accordance
with the National Health and Medical Research Council
of Australia guidelines, and with approval from the
Monash University Animal Ethics Committee (Projects
SOBSB/2010/34 and SOBSB/2009/55). Thirteen preg-
nant C57BL6/] (Monash Animal Research Platform)
females were used to obtain cortical neurons from E17
pups. For cerebral ischemia-reperfusion (I/R) experi-
ments in vivo, we used a total of 40 male C57BL/6 mice
(8-12 weeks old; weight=26+6g). Five mice were
excluded from the study when, during the surgical pro-
cedure to induce cerebral ischemia-reperfusion: (1) there
was inadequate (<70%) reduction in regional cerebral
blood flow (rCBF) (n =2); or (2) no measured increase in
blood flow at reperfusion after 30 min ischemia (n=1);
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or (3) animals died before 24 h of reperfusion had
elapsed (n=2).

Primary neuronal cultures

Mouse primary cortical neurons were prepared as previ-
ously described [19] with some modifications. Timed
pregnant mice were anesthetized using inhaled isoflur-
ane and an incision was made in the abdominal wall to
remove embryos, which were immediately placed and
dissected in Hank’s balanced salt solution (HBSS) (Invi-
trogen, Melbourne) without Ca®* and Mg>*, supplemen-
ted with HEPES (10 mmol/L) (Invitrogen, Melbourne),
gentamicin (5mg/L) (Invitrogen, Melbourne). Dissected
cortices (free of meninges) were digested in trypsin (1
mg/ml) (Sigma, Sydney) for 10 min at room
temperature, neutralized with trypsin inhibitor (Sigma,
Sydney) for 10 min, and washed three times with Neuro-
basal medium (NBM) (Invitrogen, Melbourne) supple-
mented with L-glutamine (2 mmol/L), gentamycin (5
mg/L), and B-27 supplements (Invitrogen, Melbourne)
pH 7.2. Dissociated cell suspensions were resuspended
in NBM (+ supplements) then dispensed into poly-D-
lysine (Sigma, Sydney) coated 60-mm? Petri dishes. Cells
were incubated overnight at 37 °C in a humidified at-
mosphere of 5% CO, in air. Medium was replaced with
fresh NBM (+ supplements), and the cells were main-
tained for a further 8 d without renewal of the medium.

Glucose deprivation

Glucose deprivation was used to induce slow cell death
through apoptotic mechanisms, analogous to the post-
ischemic neuronal death that occurs in the penumbra
region surrounding an infarct core in vivo [20-22]. For
glucose deprivation, cultured neurons (9 d in vitro) were
incubated in glucose-free Locke’s medium containing (in
mmol/L) NaCl 154.0, KCl 5.6, CaCl,2H,O 2.3,
MgCl,6H,0 1.0, NaHCO3 3.6, HEPES 5.0, pH 7.2, sup-
plemented with gentamicin (5 mg/L) at 37 °C in a hu-
midified atmosphere of 5% CO, in air for 24 h. For drug
treatments, cells were exposed to one or more of the fol-
lowing: CGP42112 (1x10®%, 1x107 or 1x10° M; GLS
Biochem, Shanghai); PD123319 (1x10°® M; Sigma, Syd-
ney); Compound 21 (1x108, 1x107 or 1x10°° M; kindly
provided by A. Hallberg, Department of Medicinal
Chemistry, Uppsala University, Sweden); or candesartan
(1x107 M; Astrazeneca, Sweden). All drugs were dis-
solved and diluted in distilled water.

Cell viability assay

Cell viability was determined by trypan blue exclusion.
In brief, cells were incubated at 37°C in 0.2% trypan blue
for 15 min. After washing three times with phosphate
buffered saline (PBS; pH 7.4), cells were fixed with 4%
paraformaldehyde for 10 min. Twenty images of random
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Figure 1 Mean percentage neuronal cell death. A. Data are
shown for cells exposed to normal conditions (NC) or glucose
deprivation with vehicle for 24 h (GD). Other cells exposed to GD
were treated with CGP42112 at 1x10® M (CGP-8), 1x107 M (CGP-7),
1X10° M (CGP-6) (n=8) (*P<0.05 vs. NC). B. Data are shown for cells
exposed to normal conditions (i.e. 24 h NC) or glucose deprivation
with vehicle (24 h GD) or 3 concentrations of CGP42112 in the
presence of PD123319 at 1x10° M (PD-6). Data for GD with
PD123319 alone (n=6) are also shown (*P < 0.05 vs. vehicle; NS
P>0.05 vs. vehicle). C. Data are shown for cells exposed to normal
conditions (NC) or glucose deprivation (GD) with vehicle (24 h GD)
or 1x10° M CGP42112 (CGP-6) in the absence or presence of
1x107 M candesartan (CV-7) (n=7; *P< 0.05 vs. vehicle).

fields at 200 magnification were taken from each dish
using an inverted microscope and camera (Nikon,
Japan) and associated computer software NIS-elements
version 3.0 (Nikon, Japan). Approximately one thou-
sand cells were counted from each dish. Cell viability
was determined based on colour, size and cellular
morphology by an experimenter blinded to the treat-
ment group, and the cell death occurring during the
24 h glucose deprivation period was calculated.

Cerebral ischemia-reperfusion in vivo

We used a model of focal cerebral ischemia-reperfusion
similar to that described previously [23,24]. Briefly, mice
were anesthetized with a mixture of ketamine (80 mg/kg
i.p.) and xylazine (10 mg/kg i.p.). A midline neck inci-
sion was made, and the right external carotid (ECA) and
pterygopalatine arteries were isolated and cauterized.
The internal carotid artery (ICA) was lifted and occluded
at the peripheral site of the bifurcation of the ICA. Focal
cerebral ischemia was induced by intraluminal filament
occlusion for 30 min of the right middle cerebral artery
(MCA) with a 6-0 nylon monofilament with a silicone-
coated tip (0.20-0.22 mm, Doccol Co., Redlands, CA,
USA). Severe (~75%) reduction in rCBF was confirmed
using trans-cranial laser-Doppler flowmetry (Perimed) in
the area of cerebral cortex supplied by the MCA (~2
mm posterior and ~5 mm lateral to bregma). Mice were
treated ip. with either vehicle (saline; n=16) or
CGP42112 (1 mg/kg; n=19) at the commencement of
reperfusion.

Neurological assessment and quantification of

infarct volume

Neurological deficit was evaluated using a five-point
scoring system (0, no deficit; 1, failure to extend right
paw; 2, circling to the right; 3, falling to the right; and 4,
unable to walk spontaneously) and hanging wire test in
a blinded fashion, as described previously [23-26].
Briefly, mice were suspended from a 30 cm high wire by
their forelimbs for up to 60 s. Average hanging time (i.e.
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Figure 2 Mean percentage neuronal cell death. A. Data are
shown for cells exposed to normal conditions (NC) or glucose
deprivation with vehicle for 24 h (GD). Other cells exposed to GD
were treated with Compound 21 at 1x10°® M (C21-8), 1x107 M
(C21-7), 1x10° M (C21-6) (n=6) (NS P> 0.05 vs. vehicle). B. Cells
were treated with Compound 21 in the presence of 1x10° M
PD123319 (PD-6) (n=6) (NS P> 0.05 vs. vehicle).

latency to fall) of 3 trials with 5 min rest in between was
recorded. Cerebral infarct distribution and volumes of
infarct and edema were also estimated as described pre-
viously [23,24].

Double-label fluorescent immunohistochemistry

Serial coronal sections (10 pum thick) were collected for
analysis. Brain sections were fixed in acetone for 15 min
and washed in 0.01 M phosphate-buffered saline (PBS,
3 x10 min). Sections were blocked with 10% goat serum
(Abcam) for 30 min then incubated overnight in anti-
rabbit active Caspase 3 (1:200; Abcam) and anti-mouse
NeuN (1:1000; Chemicon). Following several washes in
PBS (3 x 10 min), sections were incubated with Alexa
594-conjugated anti-rabbit IgG (1:500; invitrogen) for 2 h
in room temperature. Brain sections were then washed

Page 4 of 9

with PBS (3 x 5 min) and incubated in M.O.M Biotiny-
lated anti-mouse IgG Reagent (Vector Laboratories) for
10 min. Sections were then again washed in PBS (2 x 2
min) and Fluorescein Avidin DCS (Vector Laboratories)
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Figure 3 Regional cerebral blood flow (rCBF) and neurological
function in vehicle- and CGP42112-treated mice. Data for rCBF
(A), neurological deficit score (B) and hanging-wire test (C) are
shown for animals 24 h following cerebral ischemia and treatment
with either vehicle (Veh; n=16) or CGP42112 (n=19; *P < 0.05 vs.
vehicle).
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was applied for 5 min. Sections were washed in PBS (3 x
10 min) and cover-slipped. Staining was analysed on an
Olympus fluorescence/light microscope (Olympus,
Hamburg, Germany).

Data analysis

Results are reported as the mean + standard error (SEM).
Statistical differences (P <0.05) were determined by one-
way analysis of variance (ANOVA) with Dunnett’s post-
hoc test or an unpaired t-test, as appropriate, using
GraphPad Prism version 5 (Graph Pad Software Inc.,
San Diego, CA).

Results

Effects of AT,R agonists on death of primary cortical
neurons during glucose deprivation

Following exposure of primary cortical neurons to 24 h
of glucose deprivation, cell death was markedly
enhanced (~35-40%; see Figures 1, 2, 3). Treatment with
the AT,R agonist CGP42112 (1x10® or 1x107 M)
resulted in a ~30% reduction in cell death due to glucose
deprivation, whereas a higher concentration of
CGP42112 (1x10® M) had no protective effect
(Figure 1A). The protection by 1x10® M and 1x107 M
CGP42112 was prevented by co-treatment with the
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AT,R antagonist PD123319 (1x107° M; Figure 1B). Pro-
tection by 1x10°® M CGP42112 was unmasked by co-
treatment with the AT;R antagonist candesartan (1x1077
M; Figure 1C). In contrast to the effect of CGP42112,
the putative AT,R agonist Compound 21 (1x10® to
1x10° M) exerted no effects on cell death induced by
glucose deprivation (Figure 2A-B).

Effect of systemic administration of CGP42112 on
outcome following ischemic stroke

Vehicle or CGP42112 was injected at the time of reper-
fusion in all mice. Cerebral blood flow profiles were
similar between the two groups of mice during the 30
min of middle cerebral artery occlusion and by the end
of the 30 min recording period following reperfusion
(Figure 3A). However, compared with vehicle treatment,
blood flow was transiently but significantly higher in
CGP42112-treated mice during the first 10 min of reper-
fusion (Figure 3A). Mice treated with CGP42112 also
exhibited a significant improvement in functional out-
comes at 24 h as measured using a neurological deficit
score and by hanging wire time (Figure 3B-C). In
addition, total and cortical infarct volumes in mice trea-
ted with CGP42112 were significantly reduced compared
with vehicle-treated mice. (Figures 4 and 5). Edema
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Figure 4 Total brain infarct and edema volume in vehicle- (Veh; n=16) and CGP42112-treated mice (n=19; *P < 0.05 vs. vehicle). A.
Images of representative coronal brain sections from vehicle- (left) and CGP42112-treated (right) mice 24 h after cerebral ischemia. Total infarct
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Figure 5 Cortical (A-B) and subcortical (C-D) brain infarct volume and distribution in vehicle- (Veh; n=16) and CGP42112-treated mice
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volume also tended to be smaller in CGP42112- than
vehicle-treated mice (Figure 4D).

Effect of CGP42112 on neuronal apoptosis in vivo

Finally, we performed a small number of studies
(4 vehicle-treated and 4 CGP42112-treated mice) to as-
sess whether the neuroprotective effects of CGP42112
following stroke may be associated with attenuated
neuronal apoptosis in vivo. For this, we utilised double-
labelling immunohistochemistry for cells staining
positive for cleaved/activated caspase 3 and NeuN (the
neuronal marker). In each mouse brain, we counted be-
tween 600 and 3600 cells in 9 sections of somatosensory
cortex (bregma +1.18 to -2.18 mm) at 200x magnifica-
tion. Cleaved/activated Caspase 3 immunoreactivity was
present in at least some sections from each of the
vehicle-treated mice, at a frequency of 3.43 + 1.03% of the
6,154 NeuN-positive cells counted. By contrast, no
immunoreactivity for cleaved caspase 3 was detectable in
any of the 36 sections, containing 5,709 NeuN-positive
cells counted from CGP42112-treated mice (i.e.
0.00 £ 0.00%; p=0.06 versus vehicle, n=4, Wilcoxon

signed rank test, GraphPad Prism). These preliminary
data suggest that the post-stroke protection afforded by
CGP42112 in vivo is associated with reduced neuronal
apoptosis.

Discussion

There are three new major findings of the present study.
First, CGP42112, an AT,R agonist, exerts direct protect-
ive effects on primary neurons in culture to reduce
cell death following exposure to glucose deprivation,
an effect which was blocked by an AT,R antagonist,
PD123319. Second, at a high concentration of
CGP42112 (1x10°® M), its protective effects are lost due
to additional activation of AT;R, and this effect can be
prevented with the ATR antagonist, candesartan. Third,
systemic administration of CGP42112 at the time of
reperfusion following cerebral ischemia in mice results
in substantially less neurological deficit and infarct vol-
ume at 24 h. Together, these results suggest that the
neuronal AT,R is a valid therapeutic target for treatment
following ischemic stroke and that CGP42112 can be
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administered systemically following stroke to bring
about functional benefits.

We have previously reported that pretreatment with
CGP42112 can limit infarct volume following cerebral
ischemia in spontaneously hypertensive rats when
injected intracerebrally into the region to be subjected
to ischemia [8]. It is unknown what cell type(s) might be
the target for such protective effects of CGP42112
in vivo. The use of primary neuronal cultures in this
study has thus enabled us to evaluate whether
CGP42112 might potentially have a direct protective ef-
fect on neurons subjected to ischemia-like conditions.
Indeed, we found that this AT,R agonist (at 1x10® M
and 1x107 M) can modestly protect neurons from such
cell death. Our findings are analogous to those of Li
et al. (2005) [7] whereby AT,R stimulation with Ang II
significantly increased viability of cultured neurons sub-
jected to glutamate-induced neuronal injury.

Interestingly, the neuroprotective effect of CGP42112
was lost at the highest concentration tested (i.e. 1x10™°
M). Incomplete selectivity of CGP42112 for the AT,R
over the AT;R has been noted at high concentrations
[27]. There is good evidence that activation of the AT R
may contribute to the pathology of stroke [15], as well
as glutamate-induced neuronal injury [7]. We found evi-
dence that the activation of neuronal AT;R by 1x10°® M
CGP42112 overides its AT,R-dependent neuroprotec-
tion, in that this high concentration of CGP42112
was protective if co-administered with the AT;R
antagonist, candesartan. Such data support the notion
that therapeutic effectiveness of AT,R agonists
may be greater when co-administered with an AT;R
antagonist [15].

Unlike CGP42112, we found no evidence for any pro-
tective effect by a similar range of concentrations of
Compound 21. This drug, which is reported to be an or-
ally active non-peptidic AT,R agonist, has been shown
to have ~10-fold lower affinity than CGP42112 at the
AT,R [28]. It is therefore possible that higher concentra-
tions may have been required in the present study to
sufficiently activate AT,R to provide protection.

Systemic administration of CGP42112, commencing at
reperfusion, resulted in a markedly improved functional
outcome and reduced infarct volume, particularly in the
cortical region at 24 h following transient cerebral ische-
mia in mice. This finding is analogous to the above-
mentioned study of McCarthy et al. who found that
intracerebral injection of CGP42112 prior to cerebral is-
chemia exerted neuroprotective effects in the cortex [8].
The fact that systemic administration of CGP42112
achieved significant functional benefits associated with
reductions in infarct volume and neuronal apoptosis
suggests that movement of the drug across the blood-
brain barrier was effective. Thus, the present work
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advances the concept that administration of an AT,R
agonist at the time of tissue plasminogen activator-
induced reperfusion is plausible as a combination treat-
ment in stroke patients with successful post-ischemic
reperfusion therapy. Further studies are required to test
whether an AT,R agonist might also be protective fol-
lowing permanent cerebral ischemia (i.e. without reper-
fusion). Interestingly, CGP42112 treatment had no
significant effect on infarct at subcortical regions or
edema volumes at 24 h. It is possible that the clear bene-
ficial effects of CGP42112 on functional outcome mea-
sures include facilitation of neuronal activity [7,29] as
well as simply preventing neuronal death. Future studies
to clarify the extent of protection by CGP42112 treat-
ment at later timepoints and also at different doses are
warranted.

While our results suggest that AT,R located on neu-
rons could mediate protective effects of CGP42112 in
ischemia-like conditions, there are a number of other
cell types which may participate in the AT,R-mediated
neuroprotection observed in vivo. In particular, the
AT,R located on endothelial cells could play an import-
ant role in AT,R-mediated neuroprotection following
stroke by supporting cerebral blood flow via
endothelium-dependent vasodilatation [30]. Consistent
with this possibility, we found that blood flow velocity in
the cortical region impacted by cerebral artery occlusion
was transiently higher early during reperfusion in ani-
mals treated with CGP42112. It remains to be deter-
mined whether non-neuronal brain cells, such as
astrocytes and oligodendrocytes, might also express
AT,R that contribute to improved functional outcome
following CGP42112 treatment [31]. Furthermore, Iwa-
nami et al. (2011) have recently demonstrated that AT,R
located on haematopoietic cells may be a target for
achieving neuroprotection following stroke [6]. Elucidat-
ing the contribution of multiple cell types involved in
AT,R-mediated neuroprotection would aid in a better
understanding of the neuroprotective potential of AT,R
agonists in vivo.

It is important to note that we cannot fully exclude
the possibility that infarct volume was still not fully
developed at 24 h in this study, and thus it is possible
that the protective effect of CGP42112 after stroke
in vivo represented a delay in injury development rather
than a complete prevention of it. While we have previ-
ously found that infarct volume is no greater at 72 h
than at 24 h after 30 min of middle cerebral artery oc-
clusion in C57Bl6 mice [23], a definitive conclusion
regarding the sustained protection by CGP42112 cannot
be made without a longer timepoint being studied.

In summary, the present study provides evidence that
AT,R activation by the agonist CGP42112 can both dir-
ectly protect against neuronal cell death following



Lee et al. Experimental & Translational Stroke Medicine 2012, 4:16
http://www.etsmjournal.com/content/4/1/16

glucose deprivation in vitro, and improve functional out-
comes in association with reduced infarct volume when
administered systemically following cerebral ischemia-
reperfusion in vivo. Overall, the findings support the hy-
pothesis that administration of an AT,R agonist could
be a useful adjunct in the clinical treatment of acute
stroke.

Abbreviations

Ang lI: Angiotensin Il; AT,R: Angiotensin type 1 receptor; AT,R: Angiotensin
type 2 receptor; MCA: Middle cerebral artery; RAS: Renin-angiotensin system;
ECA: External carotid artery; ICA: Internal carotid artery; rCBF: Regional
cerebral blood flow.

Competing interests
The authors declare that they have no competing interest.

Authors’ contributions

SL performed animal and cell culture experiments, data analysis and
contributed to writing the manuscript. VHB and HK performed animal
experiments. MAE performed data analysis. TVA, GRD, REW, ESJ and CGS
designed the study, helped to interpret data and contributed to the
manuscript. All authors read and approved the final manuscript.

Acknowledgements

These studies were supported by funds from Project Grants from the
National Health and Medical Research Council of Australia (NHMRC)
(APP1010984; APP1007986), and a Grant-in-aid from the Heart Foundation of
Australia (G 10M 5218). VHB was supported by a Monash Graduate
Scholarship. TVA is a Future Fellow of the Australian Research Council. GRD
and CGS are Senior Research Fellows of the NHMRC.

Author details

'Department of Pharmacology, Monash University, Clayton, VIC 3800,
Australia. *School of Biomedical Sciences, The University of Queensland,
Brisbane, QLD 4072, Australia.

Received: 30 May 2012 Accepted: 15 August 2012
Published: 24 August 2012

References

1. Zaleska MM, Mercado ML, Chavez J, Feuerstein GZ, Pangalos MN, Wood A:
The development of stroke therapeutics: promising mechanisms and
translational challenges. Neuropharmacology 2009, 56:329-341.

2. Rahman RMA, Nair SM, Appleton I: Current and future pharmacological
interventions for the acute treatment of ischaemic stroke. Current
Anaesthesia & Critical Care 2005, 16:99-109.

3. Dai WJ, Funk A, Herdegen T, Unger T, Culman J: Blockade of central
angiotensin AT(1) receptors improves neurological outcome and reduces
expression of AP-1 transcription factors after focal brain ischemia in rats.
Stroke 1999, 30:2391-2398. discussion 2398-2399.

4. Ito T, Yamakawa H, Bregonzio C, Terron JA, Falcon-Neri A, Saavedra JM:
Protection against ischemia and improvement of cerebral blood flow in
genetically hypertensive rats by chronic pretreatment with an
angiotensin Il AT1 antagonist. Stroke 2002, 33:2297-2303.

5. lwai M, Liu HW, Chen R, Ide A, Okamoto S, Hata R, Sakanaka M, Shiuchi T,
Horiuchi M: Possible inhibition of focal cerebral ischemia by angiotensin
Il type 2 receptor stimulation. Circulation 2004, 110:843-848.

6. Iwanami J, Mogi M, Tsukuda K, Min LJ, Sakata A, Jing F, Ohshima K, Horiuchi
M: Effect of angiotensin Il type 2 receptor deletion in hematopoietic
cells on brain ischemia-reperfusion injury. Hypertension 2011, 58:404-409.

7. LiJ, Culman J, Hortnagl H, Zhao Y, Gerova N, Timm M, Blume A,
Zimmermann M, Seidel K, Dirnagl U, Unger T: Angiotensin AT2 receptor
protects against cerebral ischemia-induced neuronal injury. FASEB J 2005,
19:617-619.

8. McCarthy CA, Vinh A, Callaway JK, Widdop RE: Angiotensin AT2 receptor
stimulation causes neuroprotection in a conscious rat model of stroke.
Stroke 2009, 40:1482-1489.

20.

22.

23.

24.

25.

26.

27.

Page 8 of 9

Mogi M, Li JM, Iwanami J, Min LJ, Tsukuda K, Iwai M, Horiuchi M:
Angiotensin Il type-2 receptor stimulation prevents neural damage by
transcriptional activation of methyl methanesulfonate sensitive 2.
Hypertension 2006, 48:141-148.

Schmerbach K, Schefe JH, Krikov M, Muller S, Villringer A, Kintscher U, Unger
T, Thoene-Reineke C: Comparison between single and combined
treatment with candesartan and pioglitazone following transient focal
ischemia in rat brain. Brain Res 2008, 1208:225-233.

Gelosa P, Pignieri A, Fandriks L, de Gasparo M, Hallberg A, Banfi C,
Castiglioni L, Turolo L, Guerrini U, Tremoli E, Sironi L: Stimulation of AT2
receptor exerts beneficial effects in stroke-prone rats: focus on renal
damage. J Hypertens 2009, 27:2444-2451.

Ginsberg MD: Adventures in the pathophysiology of brain ischemia:
penumbra, gene expression, neuroprotection: the 2002 Thomas Willis
Lecture. Stroke 2003, 34:214-223.

Engelhorn T, Goerike S, Doerfler A, Okorn C, Forsting M, Heusch G, Schulz R:
The angiotensin Il type 1-receptor blocker candesartan increases
cerebral blood flow, reduces infarct size, and improves neurologic
outcome after transient cerebral ischemia in rats. J Cereb Blood Flow
Metab 2004, 24:467-474.

Brdon J, Kaiser S, Hagemann F, Zhao Y, Culman J, Gohlke P: Comparison
between early and delayed systemic treatment with candesartan of rats
after ischaemic stroke. J Hypertens 2007, 25:187-196.

Jones ES, Vinh A, McCarthy CA, Gaspari TA, Widdop RE: AT2 receptors:
functional relevance in cardiovascular disease. Pharmacol Ther 2008,
120:292-316.

Schrader J, Luders S, Kulschewski A, Berger J, Zidek W, Treib J, Einhaupl K,
Diener HC, Dominiak P: The ACCESS Study: evaluation of Acute
Candesartan Cilexetil Therapy in Stroke Survivors. Stroke 2003,
34:1699-1703.

Schrader J, Luders S, Kulschewski A, Hammersen F, Plate K, Berger J, Zidek
W, Dominiak P, Diener HC: Morbidity and Mortality After Stroke,
Eprosartan Compared with Nitrendipine for Secondary Prevention:
principal results of a prospective randomized controlled study (MOSES).
Stroke 2005, 36:1218-1226.

Unger T, Dahlof B: Compound 21, the first orally active, selective agonist
of the angiotensin type 2 receptor (AT2): implications for AT2 receptor
research and therapeutic potential. J Renin Angiotensin Aldosterone Syst
2010, 11:75-77.

Mattson MP, Barger SW, Begley JG, Mark RJ: Calcium, free radicals, and
excitotoxic neuronal death in primary cell culture. Methods Cell Biol 1995,
46:187-216.

Acker T, Acker H: Cellular oxygen sensing need in CNS function:
physiological and pathological implications. J £xp Biol 2004,
207:3171-3188.

Martin RL, Lloyd HG, Cowan Al: The early events of oxygen and glucose
deprivation: setting the scene for neuronal death? Trends Neurosci 1994,
17:251-257.

Arumugam TV, Tang SC, Lathia JD, Cheng A, Mughal MR, Chigurupati S,
Magnus T, Chan SL, Jo DG, Ouyang X, et al: Intravenous immunoglobulin
(IVIG) protects the brain against experimental stroke by preventing
complement-mediated neuronal cell death. Proc Natl Acad Sci U S A 2007,
104:14104-14109.

Brait VH, Jackman KA, Walduck AK; Selemidis S, Diep H, Mast AE, Guida E,
Broughton BR, Drummond GR, Sobey CG: Mechanisms contributing to
cerebral infarct size after stroke: gender, reperfusion, T lymphocytes, and
Nox2-derived superoxide. J Cereb Blood Flow Metab 2010,

30:1306-1317.

Jackman KA, Miller AA, Drummond GR, Sobey CG: Importance of NOX1 for
angiotensin ll-induced cerebrovascular superoxide production and
cortical infarct volume following ischemic stroke. Brain Res 2009,
1286:215-220.

Bederson JB, Pitts LH, Tsuji M, Nishimura MC, Davis RL, Bartkowski H: Rat
middle cerebral artery occlusion: evaluation of the model and
development of a neurologic examination. Stroke 1986, 17:472-476.
Hattori K, Lee H, Hurn PD, Crain BJ, Traystman RJ, DeVries AC: Cognitive
deficits after focal cerebral ischemia in mice. Stroke 2000, 31:1939-1944.
Macari D, Whitebread S, Cumin F, De Gasparo M, Levens N: Renal actions
of the angiotensin AT2 receptor ligands CGP 42112 and PD 123319 after
blockade of the renin-angiotensin system. Eur J Pharmacol 1994,
259:27-36.



Lee et al. Experimental & Translational Stroke Medicine 2012, 4:16
http://www.etsmjournal.com/content/4/1/16

28. Bosnyak S, Jones ES, Christopoulos A, Aguilar MI, Thomas WG, Widdop RE:
Relative affinity of angiotensin peptides and novel ligands at AT1 and
AT2 receptors. Clin Sci (Lond) 2011, 121:297-303.

29. Reinecke K, Lucius R, Reinecke A, Rickert U, Herdegen T, Unger T:
Angiotensin Il accelerates functional recovery in the rat sciatic nerve

in vivo: role of the AT2 receptor and the transcription factor NF-kappaB.

FASEB J 2003, 17:2094-2096.

30. McCarthy CA, Vinh A, Callaway JK, Widdop RE: Response to Letter by
Tsuda. Stroke 2009, 40:e494.

31. Zhao Y, Rempe DA: Targeting astrocytes for stroke therapy.
Neurotherapeutics 2010, 7:439-451.

doi:10.1186/2040-7378-4-16

Cite this article as: Lee et al: Neuroprotective effect of an angiotensin
receptor type 2 agonist following cerebral ischemia in vitro and in vivo.
Experimental & Translational Stroke Medicine 2012 4:16.

Page 9 of 9

Submit your next manuscript to BioMed Central
and take full advantage of:

¢ Convenient online submission

¢ Thorough peer review

* No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

* Research which is freely available for redistribution

Submit your manuscript at ( -
www.biomedcentral.com/submit BiolVed Central




	Abstract
	Background
	Methods
	Results
	Conclusions

	Introduction
	Materials and methods
	Animals
	Primary neuronal cultures
	Glucose deprivation
	Cell viability assay
	Cerebral ischemia-reperfusion in�vivo
	Neurological assessment and quantification of infarct volume
	Double-label fluorescent immunohistochemistry
	Data analysis

	Results
	Effects of AT2R agonists on death of primary cortical neurons during glucose deprivation
	Effect of systemic administration of CGP42112 on outcome following ischemic stroke
	Effect of CGP42112 on neuronal apoptosis in�vivo

	Discussion
	Competing interests
	Authors´ contributions
	Acknowledgements
	Author details
	References

