

RESEARCH

Platelet glycoprotein $Ib\alpha$ is an important mediator of ischemic stroke in mice

Simon F De Meyer^{1,2,3,4}, Tobias Schwarz⁵, Daphne Schatzberg^{1,2} and Denisa D Wagner^{1,2,3*}

Abstract

Background: Platelets play an important role in ischemic stroke. GPIb α is a major platelet receptor that is critical for platelet adhesion to exposed subendothelial matrix components at sites of vascular damage.

Methods: In this study, we used transgenic mice in which the extracellular part of GPIb α is replaced by human interleukin 4-receptor (GPIb α /IL4R α). We observed normal brain vasculature in these mice. We compared infarct size in GPIb α /IL4R α and wild-type (WT) mice 23 hours after 1-hour transient middle cerebral artery occlusion (tMCAO). In addition, the functional outcome was evaluated using a modified Bederson score.

Results: We found a significantly smaller infarct size in GPIb α /IL4R α mice compared to WT mice (38.0 ± 6.5 mm³ vs. 74.2 ± 8.6 mm³, p < 0.001). The decrease in infarct size was functionally relevant as indicated by a significantly better functional Bederson score in GPIb α /IL4R α mice compared to WT animals (1.3 ± 0.4 vs. 2.7 ± 0.3, p < 0.05).

Conclusions: Our data illustrate and further confirm the important role of platelet GPIb α in ischemic stroke, suggesting that targeted inhibition of this receptor may open new avenues in stroke treatment.

Background

Stroke is one of the leading causes of death worldwide with limited treatment options [1]. Platelets play a pivotal role in cerebral ischemia/reperfusion injury by adhering to the damaged vessel wall, leading to further platelet recruitment and thrombus formation. The glycoprotein (GP) Ib-IX-V complex is a crucial platelet receptor for initial tethering and adhesion at sites of vascular injury. This abundant complex on the platelet surface (12,500 copies per cell) consists of the leucine-rich repeat glycoproteins GPIba, GPIbB, GPIX and GPV in a 2:2:2:1 ratio [2]. The adhesive function of GPIb-IX-V is mainly attributed to the interaction of GPIb α with its major ligand von Willebrand factor (VWF), exposed upon vascular damage. The central role of the GPIba-VWF interaction in mediating initial platelet adhesion is illustrated by the bleeding disorders Bernard Soulier syndrome [3] and von Willebrand disease [4], caused by deficiency of GPIb-IX-V or VWF respectively. Besides its interaction with VWF, GPIb α can also engage counter-receptors such as α M β 2 (Mac-1) on neutrophils and P-selectin on activated platelets or endothelial cells [2]. Other GPIb α ligands include

* Correspondence: Wagner@idi.harvard.edu

¹Immune Disease Institute, (3 Blackfan Circle), Boston, (MA 02115), USA Full list of author information is available at the end of the article

Methods

Animals

GPIb α /IL4R α mice [6] and wild-type (WT) type mice (Jackson Laboratory, Bar Harbor, ME) were 8-10 weeks old males on C57BL/6J background. All experimental procedures were approved by the Animal Care and Use Committee of the Immune Disease Institute (Boston, USA).

Assessment of the cerebral vasculature

For assessment of the cerebral vasculature, animals were deeply anesthetized with isoflurane and transcardially

© 2011 De Meyer et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

perfused with phosphate buffered saline, followed by 5 ml of black ink. Brains were carefully removed, fixed in 4% PFA and the Circle of Willis and major arteries were examined under a dissecting microscope. The development of the posterior communicating arteries (PComAs) was examined and scored as described [7].

Platelet counts

To measure platelet counts, blood was collected on EDTA using coated capillaries via retro-orbital puncture. Platelet count in whole blood was determined using a Beckman Coulter AcT Diff 2 Hematology analyzer.

Induction of cerebral ischemia

Focal cerebral ischemia was induced by 60 min transient middle cerebral artery occlusion (tMCAO) as described [8-10]. Mice were anesthetized with 2% isoflurane/oxy-gen mixture. Following a midline skin incision in the neck, the proximal common carotid artery, and the external carotid artery were ligated, and a standardized silicon rubber-coated 6.0 nylon monofilament (6021; Doccol Corp., Redlands, CA) was inserted and advanced via the right internal carotid artery to occlude the origin of the right MCA. Operation time per animal did not exceed 15 minutes. The intraluminal suture was left *in situ* for 60 minutes. Then, animals were re-anesthetized, and the occluding monofilament was withdrawn to allow reperfusion.

Some animals were exclusively used for laser-Doppler flowmetry (Periflux 5000, Perimed, Kings Park, NY) to monitor regional cerebral blood flow (rCBF) in the MCA territory (6 mm lateral and 2 mm posterior from bregma).

Mice were excluded from analysis when death occurred within 24 h after tMCAO or when subarachnoid hemorrhage was mascroscopically observed during brain harvesting. No difference in exclusion rates between the two groups was observed.

Assessment of infarct volume

Mice were sacrificed 24 hours after tMCAO. Brains were quickly removed and cut into 2-mm-thick coronal sections using a mouse brain slice matrix. The slices were stained with 2% 2,3,5-triphenyl-tetrazolium chloride (TTC; Sigma-Aldrich, St. Louis, MO) in PBS to visualize the infarctions. Sections were photographed with a digital Nikon D70 camera and infarct areas (white) were measured by a blinded rater using Image J software (National Institutes of Health; http://rsbweb.nih.gov/ij).

Assessment of functional outcome

Neurological function was assessed, blinded for the mouse genotype, 24 h after tMCAO, using the modified Bederson score [11]. This test determines global neurological function according to the following scoring system: 0, no deficit; 1, forelimb flexion; 2, decreased resistance to lateral push; 3, unidirectional circling; 4, longitudinal spinning; 5, no movement.

Statistical analysis

For statistical analysis the unpaired 2-tailed t-test was used (PrismGraph 4.0 software package, La Jolla, CA). The Mann-Whitney U-test was used for analyzing the Bederson score. P values less than 0.05 were considered statistically significant. Results are shown as mean ± SD.

Results

GPIba/IL4Ra and WT animals have comparable cerebral vasculature and regional cerebral blood flow

Upon assessment of the cerebral vasculature in WT (n = 5) and GPIb α /IL4R α (n = 3) mice, no major anatomic differences were observed which could influence stroke outcome (Figure 1A). The circle of Willis and the distribution of the MCA trunk and branch appeared to be anatomically identical between the genotypes. In addition, the score assessing formation of the posterior communicating arteries of both hemispheres, which can influence susceptibility to tMCAO, did not differ significantly (1.8 ± 0.4 for WT versus 1.7 ± 0.3 for GPIb α /IL4R α mice, p = 0.82, Figure 1B).

To compare rCBF in the right MCA territory, laser doppler flowmetry in WT (n = 5) and GPIb α /IL4R α (n = 3) was monitored at baseline levels, after insertion of the occluding filament (ischemia) and 15 minutes after removal of the filament (reperfusion). After advancing the filament, the decrease in rCBF was similar between WT and GPIb α /IL4R α animals, indicating comparable occlusion of the MCA origin (7.8 \pm 4.8% of baseline level in WT mice versus 8.8 \pm 1.8% of baseline level in GPIb α / IL4R α mice, p = 0.88, Figure 1C). Fifteen minutes after reperfusion, rCBF was reconstituted in all animals to > 70% of baseline levels and again did not significantly differ between WT and GPIb α /IL4R animals (80.9 ± 6.6% of baseline level in WT mice versus 77.4 ± 3.4% of baseline level in GPIb α /IL4R α mice; p = 0.69, Figure 1C). Platelet counts of GPIb α /IL4R α mice (664 ± 31 × 10³/µl, n = 6) were slightly lower than in WT animals (822 ± $62 \times 10^3/\mu$ l, n = 9) although this difference was not significant (p = 0.071, Figure 1D).

GPIba/IL4Ra animals have a better outcome after tMCAO To investigate the role of GPIba-mediated interactions in ischemic stroke, infarct sizes of GPIba/IL4Ra (n = 7) and WT mice (n = 12) were compared after one hour tMCAO and 23 hours of reperfusion. Interestingly, we found that GPIba/IL4Ra mice had a ~50% reduction in infarct size compared to WT animals (38.0 ± 6.5 mm³ versus 74.2 ± 8.6 mm³, p < 0.05, Figure 2A). The

decrease in infarct size was functionally relevant as shown by a significantly better outcome in the Bederson test for the GPIb α /IL4R α mice compared to WT mice (1.3 ± 0.4 versus 2.7 ± 0.3, p < 0.05, Figure 2B). Taken together, these results indicate that the GPIb α receptor is critically involved in cerebral ischemia/reperfusion injury during stroke.

Discussion

We here report that mice lacking the extracellular part of GPIb α are protected from ischemic stroke as evidenced by 50% smaller infarct volumes and significantly better neurologic outcome when compared to WT mice. These results further establish the notion that GPIb α is critically involved in the pathogenesis of ischemic stroke

[12,13]. Our findings are in agreement with an earlier study using the same mouse tMCAO model in which an anti-GPIba monoclonal antibody was used to block the GPIba receptor [14]. Use of this antibody led to a 60% reduction of infarct volumes compared to control mice, which was accompanied by a significant reduction in neurologic deficits [14]. We recently demonstrated that VWF deficient mice were protected from ischemic stroke [8,15]. Since VWF is the main ligand of GPIba on platelets, our data support the notion of a pathophysiological role for the GPIba-VWF interaction in stroke, although we can not rule out that other GPIbamediated interactions are also important and abrogated in GPIba/IL4Ra mice. In full support of this, we showed that VWF-deficient mice that were reconstituted with a VWF mutant defective in binding to GPIba retained their protection against stroke [9]. Moreover, several conditions, including the GPIba Kozak polymorphism [16], GPIba variants with increased binding to VWF [17] and high VWF levels [18,19], have all been reported to be associated with an increased risk of ischemic stroke in humans.

It has to be noted that GPIba/IL4Ra mice were reported to have slightly reduced platelet counts [6]. Although not significant, also our measurements indicate a slightly lower platelet count in GPIb α /IL4R α mice compared to WT animals. Whereas we cannot completely exclude any effect of this small platelet count difference on stroke outcome, we believe that this is unlikely to cause the observed dramatic protection against stroke. Platelet adhesion to ferric chloride-treated mesenteric arterioles was virtually absent in GPIba/IL4Ra mice, resulting in the complete abrogation of thrombus formation [5]. VWF-deficient mice are still able to form thrombi in this model, although thrombus formation is significantly delayed [20,21]. Although these studies showed that ligands other than VWF can support GPIba-dependent platelet adhesion, interfering with the binding of GPIba to VWF has indeed been proven to have a profound antithrombotic effect [22-24]. Since an increasing amount of evidence suggests that GPIba and VWF could also mediate inflammatory processes, further studies are needed to establish whether inhibition of these molecules also reduce inflammation in stroke [25].

The search for safe and efficient drugs for stroke management has been hampered by an unacceptable risk of fatal bleeding as seen e.g. with platelet aggregation inhibitors [26]. In this respect, it is encouraging that we did not observe intracranial hemorrhages after stroke in GPIb α / IL4R α mice. Also in VWF deficient mice, no increased bleeding was noticed in the tMCAO model [8,9,15]. In comparison with inhibition of platelet aggregation, neutralizing the VWF-GPIb α -axis has been shown to have a better benefit-to-risk ratio with respect to bleeding in various models of experimental thrombosis [22-24]. Interestingly, a recent trial showed that administration of anti-VWF aptamer ARC1779, which blocks the VWF-GPIb α interaction, reduced cerebral emboli signals in patients undergoing carotid endarterectomy [27].

Conclusions

In conclusion, using GPIb α /IL4R α mice, we demonstrated the crucial role for GPIb α in ischemic stroke. Together with the already existing evidence, our results further warrant larger translational and clinical studies to assess the benefits or drawbacks of interfering with platelet adhesion in stroke.

Acknowledgements

SFDM is a postdoctoral fellow of the Flemish Fonds voor Wetenschappelijk Onderzoek (FWO), Belgium. This work was supported by National Heart, Lung, and Blood Institute of the National Institutes of Health grant R01 HL041002 (to D.D.W.).

Author details

¹Immune Disease Institute, (3 Blackfan Circle), Boston, (MA 02115), USA. ²Program in Cellular and Molecular Medicine, Children's Hospital Boston, (300 Longwood Avenue), Boston, (MA 02115), USA. ³Department of Pediatrics, Harvard Medical School, (25 Shattuck Street), Boston, (MA 02115), USA. ⁴Laboratory for Thrombosis Research, KULeuven Campus Kortrijk, (E. Sabbelaan 53), Kortrijk, (B-8500), Belgium. ⁵Department of Neurology, University of Wuerzburg, (Josef-Schneider-Str. 11), Wuerzburg, (D-97080), Germany.

Authors' contributions

SFDM conceived the study, conducted experiments and wrote the paper. DS conducted experiments and took care of mouse breeding. TS provided the tMCAO expertise. DW conceived and funded the study and revised the paper. All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

Received: 1 July 2011 Accepted: 13 September 2011 Published: 13 September 2011

References

- Lopez AD, Mathers CD, Ezzati M, Jamison DT, Murray CJ: Global and regional burden of disease and risk factors, 2001: systematic analysis of population health data. *Lancet* 2006, 367:1747-1757.
- Andrews RK, Gardiner EE, Shen Y, Whisstock JC, Berndt MC: Glycoprotein Ib-IX-V. Int J Biochem Cell Biol 2003, 35:1170-1174.
- Salles II, Feys HB, Iserbyt BF, De Meyer SF, Vanhoorelbeke K, Deckmyn H: Inherited traits affecting platelet function. Blood Rev 2008, 22:155-172.
- De Meyer SF, Deckmyn H, Vanhoorelbeke K: von Willebrand factor to the rescue. Blood 2009, 113:5049-5057.
- Bergmeier W, Piffath CL, Goerge T, Cifuni SM, Ruggeri ZM, Ware J, Wagner DD: The role of platelet adhesion receptor GPlbalpha far exceeds that of its main ligand, von Willebrand factor, in arterial thrombosis. Proc Natl Acad Sci USA 2006, 103:16900-16905.
- Kanaji T, Russell S, Ware J: Amelioration of the macrothrombocytopenia associated with the murine Bernard-Soulier syndrome. *Blood* 2002, 100:2102-2107.
- Murakami K, Kondo T, Epstein CJ, Chan PH: Overexpression of CuZnsuperoxide dismutase reduces hippocampal injury after global ischemia in transgenic mice. *Stroke* 1997, 28:1797-1804.
- Kleinschnitz C, De Meyer SF, Schwarz T, Austinat M, Vanhoorelbeke K, Nieswandt B, Deckmyn H, Stoll G: Deficiency of von Willebrand factor protects mice from ischemic stroke. *Blood* 2009, 113:3600-3603.

 Clark WM, Lessov NS, Dixon MP, Eckenstein F: Monofilament intraluminal middle cerebral artery occlusion in the mouse. *Neurol Res* 1997, 19:641-648.

30·1949-1951

- Bederson JB, Pitts LH, Tsuji M, Nishimura MC, Davis RL, Bartkowski H: Rat middle cerebral artery occlusion: evaluation of the model and development of a neurologic examination. *Stroke* 1986, 17:472-476.
- 12. Stoll G, Kleinschnitz C, Nieswandt B: Molecular mechanisms of thrombus formation in ischemic stroke: novel insights and targets for treatment. *Blood* 2008, **112**:3555-3562.
- Stoll G, Kleinschnitz C, Nieswandt B: The role of glycoprotein Ibalpha and von Willebrand factor interaction in stroke development. Hämostaseologie 2010, 30:136-138.
- Kleinschnitz C, Pozgajova M, Pham M, Bendszus M, Nieswandt B, Stoll G: Targeting platelets in acute experimental stroke: impact of glycoprotein Ib, VI, and Ilb/Illa blockade on infarct size, functional outcome, and intracranial bleeding. *Circulation* 2007, 115:2323-2330.
- Zhao B-Q, Chauhan AK, Canault M, Patten IS, Yang JJ, Dockal M, Scheiflinger F, Wagner DD: von Willebrand factor-cleaving protease ADAMTS13 reduces ischemic brain injury in experimental stroke. *Blood* 2009, 114:3329-3334.
- Baker RI, Eikelboom J, Lofthouse E, Staples N, Afshar-Kharghan V, López JA, Shen Y, Berndt MC, Hankey G: Platelet glycoprotein Ibalpha Kozak polymorphism is associated with an increased risk of ischemic stroke. *Blood* 2001, 98:36-40.
- Reiner AP, Kumar PN, Schwartz SM, Longstreth WT, Pearce RM, Rosendaal FR, Psaty BM, Siscovick DS: Genetic variants of platelet glycoprotein receptors and risk of stroke in young women. *Stroke* 2000, 31:1628-1633.
- Bongers TN, de Maat MPM, van Goor M-LPJ, Bhagwanbali V, van Vliet HHDM, Gómez García EB, Dippel DWJ, Leebeek FWG: High von Willebrand factor levels increase the risk of first ischemic stroke: influence of ADAMTS13, inflammation, and genetic variability. *Stroke* 2006, 37:2672-2677.
- Wieberdink RG, van Schie MC, Koudstaal PJ, Hofman A, Witteman JCM, de Maat MPM, Leebeek FWG, Breteler MMB: High von Willebrand Factor Levels Increase the Risk of Stroke. The Rotterdam Study. *Stroke* 2010, 41:2151-2156.
- De Meyer SF, Vandeputte N, Pareyn I, Petrus I, Lenting PJ, Chuah MKL, VandenDriessche T, Deckmyn H, Vanhoorelbeke K: Restoration of plasma von Willebrand factor deficiency is sufficient to correct thrombus formation after gene therapy for severe von Willebrand disease. *Arterioscler Thromb Vasc Biol* 2008, 28:1621-1626.
- Denis C, Methia N, Frenette PS, Rayburn H, Ullman-Culleré M, Hynes RO, Wagner DD: A mouse model of severe von Willebrand disease: defects in hemostasis and thrombosis. Proc Natl Acad Sci USA 1998, 95:9524-9529.
- De Meyer SF, De Maeyer B, Deckmyn H, Vanhoorelbeke K: Von Willebrand factor: drug and drug target. *Cardiovasc Hematol Disord Drug Targets* 2009, 9:9-20.
- De Meyer SF, Vanhoorelbeke K, Ulrichts H, Staelens S, Feys HB, Salles I, Fontayne A, Deckmyn H: Development of monoclonal antibodies that inhibit platelet adhesion or aggregation as potential anti-thrombotic drugs. Cardiovasc Hematol Disord Drug Targets 2006, 6:191-207.
- 24. Vanhoorelbeke K, Ulrichts H, Van de Walle G, Fontayne A, Deckmyn H: Inhibition of platelet glycoprotein Ib and its antithrombotic potential. *Curr Pharm Des* 2007, **13**:2684-2697.
- 25. Stoll G, Kleinschnitz C, Nieswandt B: Combating innate inflammation: a new paradigm for acute treatment of stroke? *Ann N Y Acad Sci* 2010, 1207:149-154.
- 26. Hankey GJ, Eikelboom JW: Antithrombotic drugs for patients with ischaemic stroke and transient ischaemic attack to prevent recurrent major vascular events. *Lancet Neurol* 2010, **9**:273-284.
- Markus HS, McCollum C, Imray C, Goulder MA, Gilbert J, King A: The von Willebrand Inhibitor ARC1779 Reduces Cerebral Embolization After Carotid Endarterectomy: A Randomized Trial. Stroke 2011, 42:2149-2153.

doi:10.1186/2040-7378-3-9

Cite this article as: De Meyer *et al.*: **Platelet glycoprotein Ib** α **is an important mediator of ischemic stroke in mice.** *Experimental & Translational Stroke Medicine* 2011 **3**:9.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

) BioMed Central

Submit your manuscript at www.biomedcentral.com/submit