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Abstract

Background: Stroke occurs more frequently in the elderly population and presents the number one leading cause
of persistent disability worldwide. Lack of effective treatment to enhance brain repair and improve functional
restoration in chronic stroke, the recovery phase of stroke, is a challenging medical problem to be solved in stroke
research. Our early study has revealed the therapeutic effects of stem cell factor (SCF) in combination with
granulocyte-colony stimulating factor (G-CSF) (SCF+G-CSF) on chronic stroke in young animals. However, whether
this treatment is effective and safe to the aged population remains to be determined.

Methods: Cortical brain ischemia was produced in aged C57BL mice or aged spontaneously hypertensive rats. SCF
+G-CSF or equal volume of vehicle solution was subcutaneously injected for 7 days beginning at 3—4 months after
induction of cortical brain ischemia. Using the approaches of biochemistry assays, flow cytometry, pathology, and
evaluation of functional outcome, several doses of SCF+G-CSF have been examined for their safety and efficiency
on chronic stroke in aged animals.

Results: All tested doses did not show acute or chronic toxicity in the aged animals. Additionally, SCF+G-CSF
treatment in chronic stroke of aged animals mobilized bone marrow stem cells and improved functional outcome
in a dose-dependent manner.

Conclusions: SCF+G-CSF treatment is a safe and effective approach to chronic stroke in the aged condition. This
study provides important information needed for developing a new therapeutic strategy to improve the health of

older adults with chronic stroke.
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Background

Stroke is a cerebrovascular disease with the highest inci-
dence occurring in those over the age of 60 [1]. Stroke
also presents the number one cause of long-term disabil-
ity in adults worldwide. A stroke is classified into 3
phases based on the pathological progression and timing
after stroke onset: the acute phase, the subacute phase
and chronic phase. The time frame of the three phases
may be different for the individuals according to the lo-
cation and the size of the infarction, the pathogenesis,
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cerebral vasculature response, and the age of the
patients. Generally, acute stroke is the first 48 h after
stroke onset, subacute stroke is 48 h to six weeks or to
three months post-stroke, whereas chronic stroke is be-
yond three to six months after stroke onset.

Treatment for stroke is not well developed. Recombin-
ant tissue plasminogen activator (rtPA) is the only US
Food and Drug Administration-approved drug for treat-
ment of ischemic stroke patients in the acute phase [2].
This thrombolytic therapy must be initiated within 4.5 h
of stroke onset. Because of the limited time window for
treatment and the potential for rtPA-induced intracereb-
ral hemorrhage, [2,3] in fact, only 1-3% of stroke
patients are able to receive this treatment [4]. As a re-
sult, more than 97% stroke patients lack a specific

© 2012 Piao et al, licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.


mailto:LZhao@lsuhsc.edu
http://creativecommons.org/licenses/by/2.0

Piao et al. Experimental & Translational Stroke Medicine 2012, 4:25
http://www.etsmjournal.com/content/4/1/25

treatment; if they survive acute and subacute stroke, they
must suffer from persistent disability and dependency
because no effective treatment, other than physical ther-
apy, is available for chronic stroke. Clearly, the effective
intervention that can enhance stroke rehabilitation in
the chronic phase is a critical need.

Stem cell factor (SCF) and granulocyte colony-
stimulating factor (G-CSF) were originally discovered as
hematopoietic growth factors two decades ago based on
their effectiveness in supporting the survival and growth
for hematopoietic stem cells or hematopoietic progenitor
cells (HSCs/HPCs) [5,6]. SCF in combination with G-
CSF (SCE+G-CSF) has been found to have synergistic
effects in the mobilization of HSCs/HPCs from the bone
marrow to the blood stream in both patients and labora-
tory animals [7]. In addition to the effects of SCF and G-
CSF in bone marrow, accumulating evidence has also
shown that SCF and G-CSF play a role in neuronal plas-
ticity. SCF enhances neurite outgrowth in embryonic
dorsal root ganglia [8,9]. cKit or SCF mutant mice show
impaired long-term potentiation (LTP) and spatial learn-
ing [10,11]. G-CSF deficient mice also display cognitive
impairment, LTP reduction, and poor neuronal networks
in the hippocampus [12]. Recently, we have revealed that
systemic administration of SCF+G-CSF but not SCF or
G-CSF alone in chronic stroke leads to a stable and
long-lasting functional improvement in 6-7 months old
spontaneously hypertensive rats [13]. However, it
remains unclear whether SCF+G-CSF treatment in
chronic stroke is also suitable for the aged. To gain this
knowledge is important because stroke has the highest
incidence in the elderly. The aim of this study, therefore,
is to determine the safety and efficiency of SCF+G-CSF
in treatment of chronic stroke in aged animals.

Methods

All the procedures in this study have been approved by
the Institutional Animal Care and Use Committee and
have been carried out in accordance with the National
Institutes of Health Guide for the Care and Use of La-
boratory Animals in the United States.

Animals

Male C57BL mice at age of 16—19 months old and male
spontaneously hypertensive rats (SHRs) at age of 11-13
months old were used in this study. These ages were
chosen based on the different average lifespan of the two
species: SHRs is approximately 18 months [14], while
that of C57BL mice is 26 months [15]. Therefore, the
11-13 month-old SHRs and 16-18 month-old C57BL
mice are equal to 61-72 years in humans, the population
in which the highest incidence of stroke occurs. In
addition, previous research has found aging-related
changes in the neuronal biological function and
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neuronal metabolism in 12 month-old SHRs [16] and in
16—18 month-old C57BL mice [17,18].

Animal model of cortical brain ischemia

The procedure for producing cortical brain ischemia
in C67BL mice has been described elsewhere [19].
Briefly, aged C57BL mice were anesthetized with Avertin
(2.4 mg/10g, i.p.) (Sigma-Aldrich, USA). The right com-
mon carotid artery (CCA) was ligated with a 6-0 silk
suture through the midline incision in the neck, and
the right middle cerebral artery (MCA) was coagulated
with a coagulator (Bovie® AAron medical, USA) after a
craniotomy was made between the right ear and eye.
Cortical cerebral ischemia in male aged SHRs was
similar to the procedures as stated in C67BL mice, and
detailed information was provided in previous publica-
tions [20-22]. Briefly, after anesthetizing SHRs with
Methohexital Sodium (50mg/kg, i.p.) (Eli Lilly, USA), the
right CCA was permanently ligated with a 3—0 silk surgi-
cal suture and the right MCA was permanently ligated
distal to the striatal branches with a 10—0 monofilament
nylon suture. During the surgery, body temperature was
monitored and maintained at 37°C by use of a heating
pad coupled to a temperature regulator. Through the
procedures stated above, the infarction was restricted in
the right cortex in both C57BL mice and SHRs [19-22].

Treatment

Recombinant mouse or recombinant rat SCF (Pepro-
Tech, USA) and recombinant human G-CSF (Amgen,
USA) were subcutaneously injected for 5 days beginning
at 3—4 months after induction of cortical brain ischemia.
Six doses were tested in chronic stroke of aged mice:
SCF (200 pg/kg/day) + G-CSF (50 ug/kg/day) (S+G 200/
50), SCF (100 pg/kg/day) + G-CSF (25 pg/kg/day) (S+G
100/25), SCF (50 pg/kg/day) + G-CSF (25 pg/kg/day) (S
+G 50/25), SCF (20pg/kg/day) + G-CSF (10 pg/kg/day)
(S+G 20/10), SCF (10pg/kg/day) + G-CSF (5 pg/kg/day)
(S+G 10/5), and SCF (5 pg/kg/day) + G-CSF (2.5 pg/kg/
day) (S+G 5/2.5). Five mice were used for each group of
tested doses. In addition, five doses were examined in
aged SHRs of chronic stroke: SCF (100 pg/kg/day) + G-
CSF (25 pg/kg/day) (S+G 100/25), SCF (50 pg/kg/day) +
G-CSF (25 pg/kg/day) (S+G 50/25), SCF (20ug/kg/
day) + G-CSF (10 pg/kg/day) (S+G 20/10), SCF (10pg/
kg/day) + G-CSF (5 pg/kg/day) (S+G 10/5), and SCF
(5 pg/kg/day) + G-CSF (2.5 pg/kg/day) (S+G 5/2.5).
Three to eight SHRs were assigned to each group of
tested doses.

Flow cytometry

Four hours after the final injection of the 5-day treat-
ment of SCF+G-CSF or saline, mice were anesthetized
with Avertin (2.4 mg/10g, ip.) (Sigma-Aldrich, USA),
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and blood was collected from the hearts. Blood cells
were incubated with APC-conjugate anti-mouse CD117
antibody (anti-ckit, 1:100) or an equal amount of isoty-
pematched APC antibodies (eBioscience, USA) on ice
for 30 min. Red blood cells were then lysed with a FACS
lysis buffer (BD Pharmingen, USA) and washed with
phosphate buffered saline containing 0.5% fetal bovine
serum. Thereafter, 5 x10° cells were analyzed with a flow
cytometer (FACSCalibur, BD, USA).

Liver and kidney function assay

Blood samples were collected from the heart of mice or
from the tail vein of SHRs 4h after the final injection of
the 5-day treatment of SCF+G-CSF or saline and then
sent to the Clinical Lab of our Medical Center for bio-
chemical tests of liver and kidney functions. The liver
enzymes including aspartate transaminase (AST), ala-
nine transaminase (ALT), alkaline phosphatase (ALK
phos), and gamma glutamyl transpeptidase (GGT) were
used for testing liver function. Blood urea nitrogen
(BUN) and serum creatinine were used for the kidney
function test.

Determination of liver and kidney weight and histological
examination of liver and kidney injury

Four hours after the final injection of the 5-day treat-
ment in mice or 14 weeks after the final treatment in
SHRs, animals were anesthetized with Avertin (for mice,
2.4 mg/10g, i.p.) (Sigma-Aldrich, USA), or Methohexital
Sodium (for SHRs, 50mg/kg, ip.) (Eli Lilly ,USA), and
the livers and kidneys were then removed. The weight of
livers and kidneys was measured and corrected with the
body weight. The livers and kidneys were then quickly
cut into small pieces (2—3 mm thick) on ice. The liver
and kidney samples were fixed in ice-cold 4% buffered-
formaldehyde for 3 days and processed for paraffin em-
bedding. Paraffin embedded sections (5pm thick) of liver
and kidney were stained with hematoxylin and eosin
(H&E). The H&E-stained sections were sent to the path-
ology, and drug-induced acute or chronic damage in the
liver and kidney was examined in a blinded manner.

Functional evaluation

Limb placement test [20,23,24] was used for evacuation
of functional outcome in the SHRs and was performed
in a blinded manner. In this test, forelimb and hindlimb
placements were examined under eight different condi-
tions. When the rat was gently pushed forward to the
edge of a table or its limbs were placed near the edge of
the table, the rat’s response was scored. For each test an
animal received a score of 0 if it was unable to place its
limb; a score of 1 if it was a partial and/or delayed (more
than 2 sec) placement of its limb; or a score of 2 if it
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exhibited an immediate and correct placement of its
limb. The maximum score is 16 for each side of the
body. Score 0 means severe neurological deficits whereas
score 16 presents no neurological deficits.

Statistical analysis

One-way analysis of variance (ANOVA) was used for
analyzing the data of liver and kidney functions. Kruskal-
Wallis nonparametric analysis was used for determining
the statistical difference of limb placement-test data.
Multiple comparison-induced errors were adjusted with
Bonferroni correction. P < 0.05 was considered statisti-
cally significant. Data were presented as mean+SE.

Results

The safety and efficiency of SCF+G-CSF treatment on
chronic stroke in aged mice

Aged mice with experimental cortical stroke were ran-
domly divided into 7 groups at 3—4 months after induc-
tion of cortical infarction: a saline control group and
6 groups with different tested doses.

To determine whether the treatment of SCF+G-CSF in
aged chronic stroke mice has any toxic effects, the func-
tion and pathology of liver and kidney were examined
because both liver and kidney are the most sensitive
organs to drug toxicity. We observed that the levels of
neither the liver function-related enzymes nor the kid-
ney function-related chemicals were significantly
increased by any dose of SCF+G-CSF (Figure 1). In
addition, the weight of livers and kidneys in treated
groups did not differ from those of the controls. More-
over, there was no drug-related damage in the bile cana-
liculi of the livers nor the renal tubules of the kidneys in
any of the treated groups, including the high dose group
(SCF 200pg/kg + G-CSF 50ug/kg) (Figure 2). These find-
ings indicate that none of the doses tested here causes
acute damage in either the livers or kidneys of aged
mice. These data provide the evidence supporting that
SCF+G-CSF at the doses ranging from S5+G2.5ug/kg to
S200+G50pg/kg are the safe treatments in chronic
stroke for aged mice.

Our early study has revealed that SCF+G-CSF treat-
ment in chronic stroke elevates the levels of bone mar-
row stem cells in the blood and that the bone marrow-
derived progenitors are involved in SCF+G-CSE-induced
enhancement of angiogenesis and neurogenesis in the
peri-infarct cortex of the brains in young mice [19].
Therefore, we sought to determine the effective dose of
SCF+G-CSF in treatment of chronic stroke in aged mice
through testing the levels of bone marrow stem cells in
the blood. Similar to the safety assays, blood samples
were collected 4 h after the final injection of the 5-day
treatment of SCF+G-CSF, and the levels of bone marrow
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Figure 1 Liver function tests (GGT, AST, ALT, and ALK) and kidney function tests (BUN and creatinine) after SCF+G-CSF treatment in
chronic stroke with different doses in aged mice. Blood samples were taken 4 hours after the final injection of SCF+G-CSF or saline. Noting
that all biochemicals are not increased by SCF+G-CSF in any dose compared to saline controls. N=5. Mean + SE.
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Figure 2 Pathological examination of livers and kidneys after SCF+G-CSF treatment during chronic stroke in aged mice. Livers and
kidneys were removed 4 hours after the 5-day injection of SCF+G-CSF. (A & B) Liver and kidney weight that are corrected with body weight.
Noting that there is no difference among the groups, indicating the treatment is not toxic. Mean + SE, n=5. (C-F) Hematoxylin and eosin staining
in liver and kidney sections. Noting that no damage is seen in both liver and kidney after a 5-day SCF+G-CSF treatment. S+G 200/50: SCF

(200 pg/kg) in combination with G-CSF (50 pg/kg). Arrows in € & D: the bile canaliculus. Arrows in E & F: renal tubules.
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Figure 3 Mobilization of bone marrow stem cells into the blood by SCF+G-CSF treatment during chronic stroke in aged C57BL mice.
Bone marrow stem cells in the blood were determined with an anti-CD117 antibody through flow cytometry. A-C: Flow cytometry data. D:
Quantification data. Note that SCF+G-CSF treatment results in a significant elevation of circulating bone marrow stem cells in a dose-dependent
manner. ** p < 0.01 as compared to saline controls. One-way ANOVA corrected with Bonferoni/Dunn. S+G: SCF+G-CSF. S200+G50: SCF (200 ug/kg)
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Figure 4 Liver function tests (GGT, AST, ALT, and ALK) and kidney function tests (BUN and Creatinine) after SCF+G-CSF treatment with
different doses during chronic stroke in aged SHRs. Blood samples were taken from the tail vein 4 hours after the final injection of SCF+G-CSF
or saline. Noting that no difference is seen between controls and any of the 5 dose treatments for all tests (p>0.05). N=3-8, mean+SE.
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First of all, we determined the toxicity of each dose
through functional and pathological examinations for
the liver and kidney. The experimental design was the
same as stated earlier in the study of aged mice. We
observed the same results as in the aged mice that none
of the tested doses caused an increase in liver function-
related enzymes or in kidney function-related chemicals
(Figure 4), indicating that the SCF+G-CSF treatment in
chronic stroke does not cause acute damage in the liver
and kidney in aged SHRs. In addition, we also tested
drug-related chronic damage 14 weeks after SCF+G-CSF
treatment. We found that the liver and kidney weights
of any of the treated rats were no different from those of
the controls (Figure 5 A & B illustrating representative
data for the two higher doses). Further, pathological
examination of the liver and kidney sections showed that
the bile canaliculi in the livers and renal tubules in the
kidneys, the two areas usually demonstrating drug dam-
age, did not show any damage in any treated animals
(Figure 5 C-F), indicating no chronic damage in the
livers and kidneys after SCF+G-CSF treatment in the
aged SHRs of chronic stroke. These data suggest that all
the tested doses of SCF+G-CSF are safe for treating aged
SHRs in the chronic phase.

In our early study, we demonstrated that SCF+G-CSF
treatment in chronic stroke induced a stable and long-
lasting functional improvement in SHRs at relatively
young age [13]. Can this treatment also have therapeutic
effects in aged SHRs? If so, which is the effective dose?
To address these questions, we tested five doses of SCF
+G-CSF in chronic stroke of aged SHRs. The stroke
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SHRs were randomized to receive the five doses of SCF
+G-CSF or equal volumes of saline beginning at 3-4
months post-stroke. Functional recovery was evaluated
with limb placement test 4, 9, and 14 weeks after the
final treatment. We found that a stable and long-lasting
functional improvement was seen in the rats treated
with the two higher doses (5100+G25 and S50+G25). In
addition, S20+G10 only caused a temporary functional
recovery, whereas the two doses lower than S20+G10
did not show functional improvement (Figure 6). This
observation suggests that SCF+G-CSF-induced func-
tional recovery is dose-dependent.

Discussion

In this study we have examined several doses of SCF+G-
CSF in chronic stroke in the aged mice and SHRs and
demonstrated that SCF+G-CSF treatment in chronic
stroke of the aged has no toxic effects. In addition, we
have also noted a dose-dependent therapeutic effect
of SCF+G-CSF on chronic stroke in the aged animal
models.

Stroke highly attacks aged population. About two-
thirds of strokes occur in elderly people over age 65 in
the United States [1]. It has been concerned that advan-
cing age may alter biological and physiological functions,
and these changes may cause a different response to
drug treatment [25,26]. In this study we used aged mice
and SHRs at which the age is equal to 61-72 years in
humans to determine the safety and effectiveness of SCF
+G-CSF in chronic stroke. Using liver and kidney func-
tion assays and pathological examination of liver and
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kidney, drug-related acute damage (4 h after 5-day treat-
ment) or drug-related chronic injury (14 weeks after
treatment) in both liver and kidney was not found in
those of SCF+G-CSF-treated animals, suggesting that
this treatment in chronic stroke in the aged population
is a safe approach.

Convincing evidence has supported that SCF in com-
bination with G-CSF can synergistically mobilize HSCs/
HPCs from bone marrow to the blood, resulting in a
robust elevation of HSCs/HPCs in the blood stream in
humans, rodents, dogs and nonhuman primates [7]. One
of our earlier studies suggested that SCF+G-CSE-
induced mobilization of HSCs/HPCs contributed to
brain repair in the chronic stroke as the great number of
bone marrow-derived cells were found in SCF+G-CSE-
treated animals and SCF+G-CSF augments bone
marrow-derived cerebral endothelial cells and bone
marrow-derived neurons [19]. Use of mobilization of
HSCs/HPCs as an index, we found that SCF+G-CSF at
the dose ranging from 50ug/kg SCF+25ug/kg G-CSF to
200pg/kg SCF+50pg/kg G-CSF was sufficient to mobilize
HSCs/HPCs during chronic stroke in aged mice.

Stroke model produced in aged SHRs provides a
clinical-relevant animal model of stroke because hyper-
tension is the most important risk factor for stroke in
humans [27]. Chronic hypertension causes extensive
changes in the cerebrovascular bed [28,29]. Occlusion of
the middle cerebral artery distal to the striatal branch
and of the ipsilateral common carotid artery in SHRs,
the rat model of stroke used for this study, leads to a
more consistent and larger infarction in the cortex than
in normotensive rats because of inadequate blood flow
through collateral vessels in the SHRs [13,20,22,29-35].
In addition to the consistent infarction, this model
also induces permanent deficits in somatosensorimotor

function that last up to the chronic phase of stroke.
Furthermore, this model has no problem for long-term
survival [13,20,22,23,33]. Using this model, we have
demonstrated that treatment of chronic stroke with
SCF+G-CSF at the dose of 100ug/kg SCF + 25ug/kg
G-CSF and 50ug/kg SCF + 25ug/kg G-CSF causes a
relatively stable and long-lasting functional improvement
in aged SHRs. Although it remains poorly understood
how SCF+G-CSF repairs an aged brain in chronic stroke,
our recent findings suggest that SCF+G-CSF-induced
reestablishment of stable neuronal networks in the
peri-infarct cortex may play an important role in the
SCF+G-CSF-induced functional recovery (Cui et al,
unpublished observation). The limitation of the func-
tional evaluation in this study is that we did not perform
the limb placement test before induction of cortical brain
ischemia to gain the baseline performance for each SHR.

It is worth noting that SCF+G-CSF would be easily to
be translated into clinical trials, as this therapy has been
proven safe and effective to mobilize HSCs/HPCs for
bone marrow transplantation in cancer patients after
chemotherapy [36-38].

In summary, the present study has demonstrated that
the combination of two hematopoietic growth factors,
SCF and G-CSF, is a safe and effective treatment for
chronic stroke in the aged condition. This observation
provides new knowledge to assist in developing a new
therapeutic strategy for chronic stroke.
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