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Abstract

As recently reviewed, 1026 neuroprotective drug candidates in stroke research have all failed on their road towards
validation and clinical translation, reasons being quality issues in preclinical research and publication bias. Quality
control guidelines for preclinical stroke studies have now been established. However, sufficient understanding of
the underlying mechanisms of neuronal death after stroke that could be possibly translated into new therapies is
lacking. One exception is the hypothesis that cellular death is mediated by oxidative stress. Oxidative stress is
defined as an excess of reactive oxygen species (ROS) derived from different possible enzymatic sources. Among
these, NADPH oxidases (NOX1-5) stand out as they represent the only known enzyme family that has no other
function than to produce ROS. Based on data from different NOX knockout mouse models in ischemic stroke, the
most relevant isoform appears to be NOX4. Here we discuss the state-of-the-art of this target with respect to stroke
and open questions that need to be addressed on the path towards clinical translation.
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Lack of mechanistic insight hampers innovation
One third of all patients do not survive a stroke, and in
those who do, brain damage can be so severe that it results
in life-long disability [1]. In this review, we will focus on
ischemic stroke (87% of all stroke cases) and on both, the
disturbed oxygen and nutrient supply to the infarcted re-
gion and the consequences of reperfusion.
Neurons start dying already 5 minutes after lacking

oxygen. The only approved treatment for acute stroke is
an early intravenous administration of recombinant tis-
sue plasminogen activator (rt-PA) to restore cerebral
blood flow. However, even if blood flow is restored and
no bleeding occurs, reperfusion can paradoxically aggra-
vate neuronal damage. Mechanistically, reactive oxygen
species (ROS) generated from the newly arriving oxygen,
i.e. ischemia-reperfusion (I/R) injury, are thought to play
a major role in this. Hence, to prevent brain damage
after an ischemic stroke novel therapeutic strategies that
specifically address this paradox are urgently needed.
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A roadblock in stroke research
Unfortunately, despite tremendous research activities, all
therapeutic strategies that at some stage showed promis-
ing results in pre-clinical animal models have finally
failed before or in clinical testing [2]. A systematic re-
view covering 8516 stroke-relevant studies added this up
to 1026 candidate strategies finally failing [3]. 114 out of
1026 neuroprotective drugs were tested in patients, 42%
even quite pre-maturely, i.e. before the results from ani-
mal testing were reported. On top of this, drugs that had
been selected for clinical trials were not necessarily the
most efficient ones based on animal data. This roadblock
in stroke innovation [4] has raised fundamental concerns
about the general approach and translatability of pre-
clinical stroke research. Possible explanations for an
impaired translatability are the divergences between pre-
clinical animal models and the clinical situation in real
patients [5]. Therefore, older animals with co-morbid-
ities should be tested and actual clinical endpoints
should be considered in order to better mimic clinical
conditions (Table 1) [6]. Furthermore, only very few
studies (3%) reported sample size calculations, and thus
the majority of studies might have been underpowered
to detect real differences (Table 1). Another important
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Table 1 Prevalence of pre-clinical stroke guidelines in stroke studies using NOX knockout mice

NOX
isoform

Parameters analysed Transient MCAO
model

Permanent
model

Age/ Weight Gender Litter-mates Power Operator-
blinded

>24 h Outcome Reference

NOX1 mortality, infarct, edema,
functional outcome

30 min/23.5 h ✗ 11-17 wk m ✓ n.s. ✓ ✗ cortical but not total
infarct " in NOX1 KOs

[10]

infarct, BBB, functional outcome,
apoptosis, NOX1 mRNA+protein levels

1/23 h and
2/22 h

pMCAO n.s. m ✓ n.s. n.s. ✗ NOX1 KOs protected [11]

mortality, infarct, edema/BBB, functional
outcome, hemorraghe, NOX1 mRNA+
protein levels, ROS+ RNS, apoptosis.

1/23 h and
1 h/6d

pMCAO,
cortical PT

6-8 wk m ✗ 93% ✓ 6 d no significant
difference

[12]

NOX2 infarct, ROS, neutrophils 2/22 h ✗ 8-10 wk m ✓ n.s. n.s. ✗ NOX2 KOs protected
but not with WT bone
marrow implant

[13]

infarct, ROS 25 min/3d ✗ 6 wk m ✓ n.s. n.s. 3 d NOX2 KOs protected [14]

infarct, BBB 2/22 h ✗ 7-9 wk m ✗ n.s. n.s. ✗ NOX2 KOs protected [15]

infarct, functional outcome, oxidative
stress, cell death, neutrophils, inflammation

75 min/22.75 h
and 75 min/3d

✗ 12-16 wk m ✗ n.s. n.s. 3 d NOX2 KOs protected [16]

mortality, infarct, functional outcome, ROS 30 min/23.5 h ✗ 6-8 wk m ✗ n.s. ✓ ✗ NOX2 KOs protected [17]

infarct, edema, functional outcome,
NOX2 protein levels, ROS.

30 min/23.5 h
and 30 min/3d

pMCAO 6-8 wk m+ f ✗ n.s. ✓ 3 d only male NOX2 KOs
protected

[18]

mortality, infarct, edema/BBB, functional
outcome, hemorraghe, mRNA+protein
levels, ROS+ RNS, apoptosis.

1/23 h and
1 h/6d

pMCAO,
cortical PT

6-8 wk and
18–20 wk
(unpublished)

m ✗ 93% ✓ 6 d no significant
difference

[12]

infarct, RNS, cell death,
inflammatory markers

75 min/24 h and
75 min/72 h

✗ 12-16 wk m ✗ n.s. n.s. 3 d NOX2 KOs protected [19]

infarct, BBB, functional outcome,
hemorraghe, ROS

2/22 h ✗ 25-30 g m ✗ n.s. n.s. ✗ NOX2 KOs protected [20]

mortality, infarct, edema, functional
outcome, NOX2 protein levels,
ROS+ RNS, NO function.

30 min/23.5 h ✗ 8-12 wk m ✗ n.s. ✓ ✗ NOX2 KOs protected [21]

NOX4 mortality, infarct, edema/BBB, functional
outcome, hemorraghe, mRNA+protein
levels, ROS+ RNS, apoptosis.

1/23 h and 1 h/6d pMCAO,
cortical PT

6-8 wk and
18–20 wk

m+ f ✗ 93% ✓ 6 d NOX4 KOs protected [12]

Published studies evaluating the role of NADPH oxidases in stroke by means of KO mice were assessed for their translatability. Parameters that should be investigated when performing a stroke study are, amongst
others, the use of aged mice of both genders, and wildtype littermates as negative controls. In addition to transient models, a permanent model should be added, and animals should be assessed for longer time
periods than 24 h. Finally, power calculations should be reported. All of the above cited studies used temperature control and monitored cerebral blood flow. Unfortunately, none of these studies included animals
that present co-morbidities.
BBB: blood brain barrier leakage; d: days; f: female; h: hours; KO: knock out; m: male; min: minutes; n.s.: not specified; pMCAO: permanent middle cerebral artery occlusion; PT: photothrombosis; ROS: reactive oxygen
species; RNS: reactive nitrogen species; wk: weeks.
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aspect is the problem of publication bias in favour of
positive results [7]. These quality concerns are not only
related to the field of stroke research and rather apply to
animal models in general. To improve the quality of pre-
clinical stroke research the Stroke Therapy Academic In-
dustry Roundtable (STAIR) published criteria in 1999
[8], which were updated in 2009 [9].

Mechanism of stroke #1027: Oxidative stress and
how to tackle it
How was the oxidative stress hypothesis addressed so far
and why do we believe that NADPH oxidase is a highly
promising target to induce neuroprotection?
ROS are non-radical and radical reactive molecules.

They are formed when one electron is transferred to
molecular oxygen, forming the superoxide anion (O2

-).
O2

- can be rapidly dismutated into more stable species
such as hydrogen peroxide (H2O2), or - in the presence
of nitric oxide (NO) - it forms the peroxynitrite anion
(ONOO-). Importantly, all of these form a potentially
disease-triggering mixture of ROS.
ROS have a short half-life and are therefore difficult to

measure. Furthermore, there is no method that is able to
distinguish the different types of ROS formed. Often, glo-
bal ROS levels are measured and localised in situ using
dihydroethidium (DHE), which, after its oxidation, can be
detected as red nuclear fluorescence [22]. In vivo, measur-
ing ROS using DHE is difficult because the intravenously
injected DHE hardly reaches ischemic regions [11].
Importantly, ROS are not only detrimental. Rather, they

also serve as essential signalling molecules that for ex-
ample regulate vascular tone, oxygen tension and erythro-
poietin production [23]. In a healthy brain, as in any
organ, there is a balance of pro- and anti-oxidants. If pro-
oxidants become too prominent, oxidative stress arises.
Most times, oxidative stress is caused by an elevated pro-
duction of ROS. This may be an important underlying
mechanism of I/R damage caused by an ischemic stroke.
The free-radical scavenger NXY-059 was first considered

as a major breakthrough by stroke researchers. The drug
fulfilled all major STAIR criteria and its highly promising
pre-clinical data, even in non-human primates, led to the
largest neuroprotective trials in stroke research. Whereas
the first, although underpowered, phase III trial (SAINT I)
still left room for hope by improving disability 90 days post
stroke after NXY-059 treatment [24], a second larger
trial (SAINT II) highlighted the inefficiency of the anti-
oxidative drug [25]. After the huge disappointment, many
scientists were preoccupied with the question why this
promising radical scavenger finally failed? Reasons may be
that different outcomes have been measured and that
there was a treatment delay compared to pre-clinical stud-
ies [26]. NXY-059 is also a weak antioxidant and has poor
blood–brain-barrier penetration [27]. Bath et al. [28] also
suggested that negative publication bias (unpublished data
from AstraZeneca) might have led to an initial overesti-
mation of efficacy.
In general, all major clinical trials aiming to provide

proof-of-principle of the oxidative stress theory by ap-
plying antioxidants have failed or can even be harmful
and lead to increased mortality [29,30]. Nevertheless, it
would be a mistake to dismiss the oxidative stress
hypothesis.
Many likely reasons for the lack of clinical efficacy of

antioxidants, also for other diseases have been suggested,
which are discussed in more detail elsewhere [31,32].
The possible reasons, for example, include differences
between animal models and patients as discussed above,
e.g. presence/absence of co-morbidities, gender and age.
Additionally, it is unlikely that antioxidant supplements
can work in humans as for example ROS are not evenly
distributed within the body, or not even within a cell,
and supplemented antioxidants are not targeted to these
specific sites. Further, antioxidants cannot distinguish
between physiological and pathological ROS. ROS may
also cause damage already before they are inactivated by
antioxidants.
A far superior strategy may thus be to tackle the prob-

lem at its root by inhibiting the formation of ROS in the
first place rather than attempting to scavenge them after
they have been formed [31]. However, a prerequisite is to
identify the disease-relevant sources of ROS. Several
sources of ROS exist, including mitochondria [33],
xanthine oxidase (XO) [34,35], monoamine oxidase [36],
tyrosine hydroxylase [36], L-amino acid oxidase [36], lipid
peroxidases [37], uncoupled nitric oxide synthase (NOS)
[38], cytochrome P450 (CYP450) [39], cyclooxygenase
(COX) and NADPH oxidases (NOX) [36]. Except for one
enzyme family, all these sources have primarily functions
other than producing ROS. They rather form ROS as by-
products (mitochondria) because of substrate/cofactor
shortage (XO, NOS), or as physiological intermediates
(CYP450, COX). Only NADPH oxidases have ROS pro-
duction as primary role [40,41]. NADPH oxidases are a
major source of ROS in the vascular system [42], in pha-
gocytes [43], in cerebral vessels [36] and perhaps also in
neurons [44].
NADPH oxidases
NADPH oxidases are multi-subunit complexes. Seven
homologues of the catalytic subunit exist, NOX1-5 and
the dual oxidases DUOX1 and 2 that also contain a per-
oxidase-like domain [41,45,46]. NADPH oxidases not
only differ in their catalytic subunit NOX, but also in
their subunit requirements, in tissue and (sub)cellular
localization and also in the nature of the ROS produced
(Table 2) [41,46,47].



Table 2 Overview of regulation, ROS product, and localization of the different NOX isoforms

Isoform Regulators Product Tissue distribution Cellular distribution

NOX 1 NOX1 subunits, Rac, PDI,
Hsp90, hypoxia

O2
- Brain, vessels, colon, stomach,

uterus, placenta, prostate, retina.
Neurons, astrocytes, microglia, VSMCs, epithelial
cells, osteoclasts,

NOX 2 NOX2 subunits, Rac, Hsp90,
hypoxia

O2
- Brain, vessels, liver, muscle. Neutrophils, monocytes, macrophages, T-cells,

microglia, astrocytes, ECs, fibroblasts, cardiac
myocytes, hepatocytes, hemapoietic stem cells.

NOX 4 p22phox, PolDip2, PDI, hypoxia H2O2 Ubiquitous, especially kidney,
vessels, lung, bone.

Neurons, astrocytes, ECs, VSMCs, fibroblasts,
mesangial cells, keratinocytes, osteoclasts, hepatocytes.

NOX 5 no subunits, but calcium
sensitive, Hsp90

O2
- Testis, spleen, kidney, lymphatic

tissue, uterus
ECs, VSMCs, lymphocytes, and several cancer cell lines

ECs, endothelial cells; H2O2, hydrogen peroxide; Hsp90: heat shock protein 90; O2
- , superoxide, PDI: protein disulphide isomerase; PolDip2: polymerase (DNA-directed)

delta interacting protein; VSMCs, vascular smooth muscle cells.
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Tissue distribution and cellular localization
NOX1, 2, 4 and 5 are expressed in blood vessels.
However, NOX5 is not present in rats and mice.
NOX3 is expressed in the inner ear and DUOX1 and
DUOX2 are expressed in thyroid, with DUOX2 also
being present in lung and gastrointestinal tract epithe-
lium. [47,48]. As NOX3, as well as DUOX1 and
DUOX2, are neither expressed in the vasculature nor
in the brain, they are not relevant for stroke and will
thus not be further discussed in this review. A sum-
mary of the tissue and cellular distribution of NOX1,
2, 4 and 5 is given in Table 2.
NOX1 is predominantly found in colon epithelia [49],

but also at lower levels in cerebral cells (neurons, astro-
cytes and microglia) [50] and in vessels. In the vascula-
ture, NOX1 is usually restricted to vascular smooth
muscle cells (VSMCs) [51]. Indeed, NOX1 knockout
(KO) mice have slightly reduced blood pressure and a
reduced pressor response to angiotensin II [52,53].
NOX2 was first discovered in phagocytes and was pre-

viously called gp91phox. The role of NOX2 in neutrophils
is host defence [41]. Besides circulating neutrophils, it
was also detected in the brain (mainly in microglia) and
in vascular cells [41]. In vessels, NOX2 is present in
endothelial cells (ECs) and fibroblasts [54], and also in
infiltrating monocytes, macrophages and T-cells when
underlying pathology is present.
NOX4 (previously called renox) is widely distributed

with high physiological levels in the kidneys [55], lung
[56] and vasculature [57]. Therefore, knocking out the
NOX4 gene was expected to induce arteriolar
hypotension, altered pulmonary and renal function.
However, surprisingly, deletion of NOX4 did not cause
any respective abnormal basal phenotype [12,58]. NOX4
is the most dominant isoform in vessels and its levels
are even higher in cerebral vessels [59]. NOX4 mRNA is
expressed in ECs, VSMCs and fibroblasts [40]. Expressed
and functionally active NOX4 has also been found in
neurons [60] and astrocytes [11].
As NOX5 is not expressed in rodent cells, it has not

been studied in classical NOX KO studies [61]. In other
species, NOX5 was detected in testis, spleen, kidney,
lymphocytes, ECs and VSMCs [62].
In summary, different NOX homologues have different

functions in different cell types, and subcellular
localization is also an important determinant of NOX
function. For more detailed information we refer to
other reviews [41,47].

Regulation
All NOX isoforms contain six trans-membrane domains
with two heme-binding sites and on the cytosolic tails
binding-sites for FAD and NADPH [63]. A number of
regulatory subunits have been identified for the NADPH
oxidases. NOX1-4 form heterodimers with the mem-
brane-bound p22phox subunit [64].
NOX2 was the first isoform identified and thus is the

best-studied isoform. Subunits that are needed for NOX2
activation are divided into two groups: activating mole-
cules (p67phox) and organizing molecules (p47phox). Upon
phosphorylation of p47phox, cytosolic subunits (p40phox,
p47phox and p67phox) translocate to the cell membrane and
bind to intracellular loops of NOX2. Activators bind to
Rac in the cytosol and then migrate towards NOX2 with
help of the organizers [41] (Figure 1). For ROS production
by NOX2, Rac and p47phox have to be activated
simultaneously.
Similar to NOX2, NOX1 is also regulated by cytosolic

units. Its organizer molecule NOXO1 constitutively inter-
acts with the membrane and does not need phosphoryl-
ation like p47phox. Therefore, NOX1 seems to be active
under basal conditions [65]. The activating molecule of
NOX1 is called NOXA1.
NOX4 seems to only need interaction with p22phox, but

does not necessarily require any of the known cytosolic
subunits to be active. NOX4 was therefore suggested to be
constitutively active, and thus its activity may directly be
related to its protein levels [66]. Recently, Rac implication
in NOX4 activation has also been excluded [67]. However,
stimulus-induced ROS production by NOX4 has been
observed; and maybe other, yet unknown factors play a
role in NOX4 activity regulation. It has been shown that



Figure 1 Relevant NOX isoforms in stroke and their respective subunit requirements (adapted from [46]). NOX2, as well as NOX4, seem
to be implicated in stoke. Known regulatory proteins are associated with individual isoforms. Activator proteins are coloured in green and
organizing proteins in blue. Both isoforms form functional dimers with p22phox. p47phox phosphorylation subsequently causes the cytosolic
subunits p47phox, p67phox, and p40phox to translocate into membranes and fuse with the catalytic subunit NOX2. This is followed by interaction
between Rac and NOX2. Nox4 forms a dimer with p22phox. Although NOX4 does not appear to require additional regulators, recently some NOX4
binding proteins (DPI and PolDip2) have been discovered whose role needs to be further elucidated. Potential target sites of NADPH oxidase
inhibitors are also shown in the scheme.
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polymerase (DNA-directed) delta interacting protein 2
(PolDip2) interacts with p22phox, which promotes NOX4
linking to the cytoskeleton [68] (Figure 1). Furthermore,
protein disulphide isomerase (PDI) may also bind to
NOX4, as well as to NOX1 [69]. However, the role of Pol-
Dip2 and PDI in regulating NADPH oxidases has to be
further investigated.
NOX5 does not require heterodimerization with

p22phox. Interestingly, NOX5 is directly activated by cal-
cium, which can bind on the EF-hand motives of the N-
terminal tail of NOX5 [41,46]. Although it is generally
agreed that there is no need for other NOX5 binding
proteins, a recent study showed that Hsp90 binds to
NOX1, 2 and 5 and that this binding is needed to confer
enzyme stability [70]. Five splice variants of NOX5 have
been discovered, with the shortest isoform 5s lacking the
calcium-binding domain [62].
Moreover, it was postulated that NADPH oxidases are

involved in the ischemic pathway by functioning as oxy-
gen sensors [71], an important aspect in the field of I/R
injury. In hypoxic cells, mRNA and protein levels of
NOX increased rapidly. The subsequent increase in ROS
production led to an upregulated and activated hypoxia
inducible factor (HIF) [31], whereas in NOX KO cells,
HIF was not induced by hypoxia. Hypoxia seems to
regulate all NOX isoforms [72-74].
Besides regulation through binding proteins, various

stimuli, e.g. angiotensin II, thrombin or growth factors,
have also been shown to alter the expression or the ac-
tivity of NADPH oxidases [47]. NOX homologues can
cause different physiological responses when coupled to
different agonists.
Enzymatic products
Reduction of oxygen by transmitting one electron from
NADPH results in O2

- that can be converted into H2O2 by
superoxide dismutases (SOD). All NOX isoforms appear
to produce O2

- , except NOX4 that mainly produces H2O2

[55,75] (Figure 1). Because of this H2O2 production, ini-
tially several problems were encountered to detect ROS
production from the NOX4 isoform [67,76]. Mutations of
NOX4 can switch ROS release from H2O2 to O2

- [75].

Role of NADPH oxidases in stroke
In Table 1 we summarised the published pre-clinical
stroke studies that investigated the role of NADPH oxi-
dases for their adherence to some of the STAIR criteria.
The first evidence of elevated or decreased NOX levels
in a certain tissue is often provided by measuring mRNA
levels. However, are mRNA levels really relevant for pro-
tein levels or even activity? Further, association of subu-
nits plays a role in NOX activity. For NOX4, mRNA
levels were suggested to be related to activity [77], but
there are also reports that NOX4 is regulated at the
translational level [78]. Generally, a better approach
would be to assess protein levels and localisation. How-
ever, the major issue with detecting NOX proteins is the
lack of specific and well-characterized antibodies.
To study the cause-effect relationship, NOX (or other

subunit) overexpressing animals or KO mice are used
[79]. Mice with a deleted NOX2 gene are commercially
available. In this KO model, exon 3 of the NOX2 gene is
deleted [80]. Two NOX1 KO models, lacking the same
part of the NOX1 gene (exons 3–6), have been published
by different groups [52,53]. Those mice showed a slightly



Radermacher et al. Experimental & Translational Stroke Medicine 2012, 4:11 Page 6 of 11
http://www.etsmjournal.com/content/4/1/11
hypotensive phenotype. Four different NOX4 KO have
been published, and none of them shows a basal pheno-
type [12,58,81,82]. Other studies observed a reduced
neuronal death in mice lacking the p47phox subunit,
which is required for NADPH oxidase assembly [83]. A
problem in KO models is the possibility that a truncated
NOX protein or an alternative splice variant with re-
sidual activity can still be formed when the deletion
takes place in one of the early exons [84,85]. We there-
fore believe that it is a better approach to delete the
exons coding for NADPH- or FAD-binding sites of the
enzyme (exon 14–15 or exon 9 respectively).
An alternative approach in mice or other species is to

use small interfering RNA (siRNA) to silence the gene of
interest. When using this approach the isoform-specificity
of the siRNA should be tested [86], and protein levels
should be measured. However, specific antibodies would
be needed.
Pharmacological NADPH oxidase inhibition presents

another tool to validate the role of NOX in stroke (for re-
view see [31,87]. Apocynin, diphenylene iodium (DPI) and
4-(2-aminoethyl)-benzensulfonylfluorid (AEBSF) have
shown neuroprotective potential in vivo [88-90]. However,
these drugs are not specific to NADPH oxidase inhibition.
DPI blocks enzymatic flavin sites in general [91] and
AEBSF is a non-specific serine protease inhibitor [92]. For
apocynin activation by neutrophil-secreted myeloperoxi-
dase is required, which is not present in some cell types
such as VSMCs [93]. Further, apocynin has antioxidant
properties [93] and also inhibits rho kinase [94,95]. Rho
kinase-inhibition could be the actual neuroprotective
mechanism of apocynin as Rho kinase is implicated in
stroke [96]. Therefore, any results on the role of NADPH
oxidase obtained by using apocyin should be questioned.
Besides, the therapeutic window of apocynin is quite nar-
row, and doses above 2,5 mg/kg actually increased cere-
bral hemorrhage and post-stroke mortality [17,97]. Even
so, it is the most frequently used compound to provide
NADPH oxidase inhibition in stroke studies. It was
reported to reduce post-ischemic ROS production in neu-
rons and microglia [98,99] and showed neuroprotective
effects in stroke [15,88]. In most studies, apocyin was
given prior to stroke onset, which is not reflecting the clin-
ical situation. Apocynin was found to reduce cerebral ROS
levels when administered pre-stoke but not post-stroke
[17]. Similarly, when given post-stroke, Kleinschnitz et al.
observed no effect of apocynin on stroke outcomes in
mice [12].
A more specific NOX inhibitor, VAS2870 and its deriva-

tive VAS3947, likely inhibit all NOX isoforms. These com-
pounds were shown to be free of general flavin protein
inhibition or ROS scavenging activities [100]. Importantly,
when given hours after stroke, less ROS production,
reduced infarct volume and better neurological function
were observed in VAS2870 treated WT mice [12]. How-
ever, just recently off-target effects of VAS2870 have been
published. As no molecular mechanism has been pro-
posed for NOX inhibition by VAS2870, authors suggest
the possibility that Cys thiol alkylation may play a role in
NOX4 inhibition [101].
Another specific inhibitor is gp91ds-tat, a peptide that

blocks the p47phox binding site of NOX2, thereby inhi-
biting its activity. Possibly also the activity of NOX1 is
inhibited but an effect on NOX4 and NOX5 is unlikely
[102]. Recently, GKT136901 was introduced as a highly
potent NADPH oxidase inhibitor with dual activity on
NOX1 and NOX4 [103]. However, neither data using
gp91ds-tat nor GKT136901 in stroke studies have been
published.
NOX studies performed in the stroke field
Most data derive from RT-PCR studies, as protein
expressions are often very low and specific antibodies
difficult to obtain. mRNA and even protein levels of
NOX1, 2, 4 and 5 were discovered in healthy brains of
mice, rats and humans with NOX2 and 4 being the
dominant isoforms [104]. This presence suggests a
physiological role. Activities of NADPH oxidases are
even higher in rat and mouse cerebral arteries versus
systemic vessels [105].
NOX1
In cell cultures of the murine brain, NOX1 protein was
found in neurons, astrocytes, microglia and endothelial
cells [11]. Results on the role of NOX1 in stroke using
NOX1 KO mice are conflicting. Jackman et al. [10] did
not observe an effect of NOX1 deletion on total infarct
volume, edema or neurological outcome after tMCAO
when compared to WT mice. However, they did find an
increased cortical infarct in NOX1 KOs, suggesting that
NOX1 might play a role in limiting cortical infarct size.
Basal ROS levels in the brains were similar in WT and
NOX1 KO mice. A second group [11] observed the op-
posite effects of NOX1 KO on stroke. They reported a
55% smaller stroke lesion that was paralleled by better
neurological outcome in NOX1 KO versus littermate
WT mice after 1 h of ischemia and 23 h of reperfusion.
However, no difference in lesion size was observed when
the ischemic period lasted 2 h or when permanent is-
chemia was investigated. Apoptosis levels were similar
in both strains and the response to antioxidants and
NOS inhibitors was similar in both genotypes. Thus, the
observed infarct size reduction in NOX1 KO mice was
neither related to reduced ROS production nor to
reduced NO bioavailability. A third study reported no sig-
nificant difference in stroke outcome between NOX1 defi-
cient and control mice 1 day after cerebral I/R injury [12].
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In summary, it is unlikely that NOX1 plays a major
role in stroke in mice. One should also keep in mind
that NOX1- and p47phox deficient mice had reduced
basal blood pressures and blunted pressor responses to
angiotensin II [52,53,106], which may interfere with
stroke outcome.

NOX 2
The most studied isoform in stroke experiments is NOX2.
After transient focal cerebral ischemia NOX2 protein levels
were elevated, p47phox translocated to the membrane and
ROS production increased [107]. These results show a po-
tential role of NOX2 in stroke pathology (Figure 2). The
spatiotemporal profile of NOX2 expression was studied in
endothelin-1-induced stroke in conscious rats [108].
NOX2 mRNA was upregulated from 6 hours until 7 days
post-stroke in the cortex and striatum. At 6 h post-stroke
ROS production was found in neurons, and after 7 days in
macrophages and microglia.
Several papers reported a protective effect of deleting

NOX2 in mice: NOX2 deficient mice had a 40% smaller
infarct volume than WT mice [13-21]. In contrast to these
studies, Kleinschnitz and colleagues could not reproduce
the findings of the previous studies concerning the neuro-
protective effect of NOX2 deletion despite using a high
number of animals (n= 19) [12]. VAS2870 did not display
an additional protective effect in NOX4 knockout mice,
whereas it did so in WT mice, further suggesting that
NOX1 and 2 have no major implication in stroke path-
ology [12]. Reasons for the discrepancies are unclear, but
several factors may play a role, including different occlu-
sion times and different experimental protocols, as dis-
cussed in more detail in the review of Radermacher et al.
(Antioxid Redox Signal, in revision).
Figure 2 Schematic overview of NADPH oxidases implicated in stroke
level of the cerebral capillaries. The figure shows a brain capillary in cross s
covering these capillaries. The figure also shows pericytes, neurons and mic
contributes to BBB disruption, inflammation and postischemic neuronal inju
NOX4
In the brain, NOX4 is most abundant in endothelial
cells, but also present in neurons and astrocytes (Fig-
ure 2) [11]. As for NOX2, the spatiotemporal profile of
NOX4 mRNA expression after stroke in rats has been
measured [108]. NOX4 mRNA was upregulated 6 h
post-stroke and then returned to control levels. In con-
trast, others reported elevated NOX4 mRNA levels in
the rat cortex 24 h after pMCAO lasting up to 15 days.
The early elevation of NOX4 mRNA is probably due to
neuronal expression and the later peak expression to
neo-angiogenesis [60]. In another study, NOX4 mRNA
was elevated at 12 and 24 h after tMCAO [12]. Here,
NOX4 expression was also validated at the protein level
(by immunohistochemistry) in brain samples from
stroke patients and in mouse brain slices. Co-staining
clearly showed colocalization of NOX4 with endothelial
cells and neurons. To our knowledge only one study
performed stroke experiments in NOX4 KO mice [12]
(Figure 3). After exclusion of systemic vascular effects in
NOX4 deficient mice, 75% smaller infarct volumes were
measured in NOX4 KO compared to WT, NOX1 KO
and NOX2 KO mice (Figure 3). In addition, functional
outcomes were improved, as was survival. Similar results
were obtained in female, in older mice (18–20 weeks)
and when using a permanent stroke model. This study
shows that NOX4 seems to play a major role in brain
damage and thus is a promising target in stroke therapy.
In addition to this NOX4 KO study, another group re-
cently showed first results confirming the detrimental
role of NOX4 post stroke. For their study, this group
used transgenic mice that overexpress NOX4 in endo-
thelial cells. One day after MCAO, the infarcted region
of these transgenic animals was bigger than in wildtype
. The blood–brain barrier (BBB) is formed by endothelial cells at the
ection, showing endothelial tight junctions and end-feet of astrocytes
roglial cells. Cerebral NOX activation and subsequent ROS generation
ry.



Figure 3 NOX4 deletion confers neuroprotection during stroke
[12]. The upper images show the TTC staining of coronal brain slices
after cerebral I/R in WT, NOX1-, NOX2- and NOX4 KO mice on 24 hours
after tMCAO (1 hour ischemia). The infarct volume (white region) is
about 75% smaller in NOX4 deficient mice compared to the other
mice, as also illustrated by the bar graph. Stroke experiments were also
performed in female mice and in older animals, obtaining the same
results.
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mice and suppression of eNOS by NOX4 was proposed
as being responsible for infarct enlargement [109].

NOX5
As NOX5 is not expressed in rats and mice, studies in-
vestigating this isoform are scarce, and thus to date no
data on the role of NOX5 in stroke are published. To
elucidate the possible role of this isoform in animals,
transgenic expression of NOX5 in mice is needed, or
other animal species, such as rabbits, have to be used.

Summary
Excessive NADPH oxidase-derived ROS are likely to
lead to neurodegeneration via breakdown of the blood–
brain-barrier and/or via neuronal apoptosis (Figure 2).
However, ROS-scavenging antioxidants have shown dis-
appointing results in clinical trials. Stroke research
should move on and tackle oxidative stress at its root,
meaning specifically inhibiting the disease-relevant
source of ROS, such as NADPH oxidases, rather than
attempting to detoxify them in an untargeted fashion
after they have been formed. When neuroprotection
during stroke was studied, a maximal reduction in in-
farct volume of 30-40% was achieved in NOX2 deficient
mice [110]. However, in NOX4 KO mice, bigger changes
(75%) could be observed [12]. Furthermore, in NOX4
KO mice no basal phenotype has been observed yet,
suggesting that side effects from therapeutic inhibition
of NOX4 should be rather small.

Conclusions
Until now, the cellular and molecular origin of ROS caus-
ing I/R injury in the brain has not been fully identified yet.
However, NADPH oxidases are promising therapeutic tar-
gets for stroke therapy. Stroke therapy has a very short
therapeutic window; the drug has to be administered quite
soon after stroke onset to avoid neuronal death. If NOX
inhibitors turn out to be promising therapeutic agents, the
optimal therapeutic window has to be established and the
drug will probably have to be tested in presence of rt-PA
that will still be used for initial clot lysis.
Modern neuroimaging techniques are now available,

particularly magnetic resonance imaging and angiography
of the brain [111-113]. These tools should also be used in
pre-clinical studies to monitor long-term outcome and to
show that the treatment not only alters recovery kinetics,
but really provides long-term protection [114-116]. Only
then it can be ruled out that the evolution of stroke is just
slowed down rather than stopped.
Despite recent progress, much remains to be learned

about NADPH oxidases as potential pathological sources
of ROS production. Therefore, for instance, conditional
KO models in specific cell types are warranted and more
studies are particularly needed on the non-rodent iso-
form NOX5. As studies on the role of NADPH oxidases
in stroke so far focussed on mice or rats, other species
than rodents could be useful for clinical translation.
Excitingly, NADPH oxidases are not only implicated in

stroke, they may also serve as novel therapeutic target for
other cardiovascular [117] and neurodegenerative diseases
[118]. As such, NOX inhibitors could thus serve as power-
ful therapeutic strategy in pathologies where oxidative
stress is implicated. Clearly, isoform-selective NOX inhibi-
tors would help to establish the role of the different iso-
forms in diseases and to successfully translate this novel
strategy into the clinic. This would be a major break-
through after years without any major therapeutic progress
in stroke therapy.
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