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Abstract

Introduction: Structural plasticity with synapse formation and elimination is a key component of memory capacity
and may be critical for functional recovery after brain injury. Here we describe in detail two surgical techniques to
create a cranial window in mice and show crucial points in the procedure for long-term repeated in vivo imaging
of synaptic structural plasticity in the mouse neocortex.

Methods: Transgenic Thy1-YFP(H) mice expressing yellow-fluorescent protein (YFP) in layer-5 pyramidal neurons were
prepared under anesthesia for in vivo imaging of dendritic spines in the parietal cortex either with an open-skull glass
or thinned skull window. After a recovery period of 14 days, imaging sessions of 45–60 min in duration were started
under fluothane anesthesia. To reduce respiration-induced movement artifacts, the skull was glued to a stainless steel
plate fixed to metal base. The animals were set under a two-photon microscope with multifocal scanhead splitter
(TriMScope, LaVision BioTec) and the Ti-sapphire laser was tuned to the optimal excitation wavelength for YFP
(890 nm). Images were acquired by using a 20×, 0.95 NA, water-immersion objective (Olympus) in imaging depth
of 100–200 μm from the pial surface. Two-dimensional projections of three-dimensional image stacks containing
dendritic segments of interest were saved for further analysis. At the end of the last imaging session, the mice
were decapitated and the brains removed for histological analysis.

Results: Repeated in vivo imaging of dendritic spines of the layer-5 pyramidal neurons was successful using both
open-skull glass and thinned skull windows. Both window techniques were associated with low phototoxicity after
repeated sessions of imaging.

Conclusions: Repeated imaging of dendritic spines in vivo allows monitoring of long-term structural dynamics of
synapses. When carefully controlled for influence of repeated anesthesia and phototoxicity, the method will be
suitable to study changes in synaptic structural plasticity after brain injury.
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Introduction
Since its introduction in the 1990’s [1], 2-photon micros-
copy (2-PM) soon proved its enormous benefit for intravital
imaging, especially in the field of neuroscience [2-8]. The
possibility of penetrating tissue in depths up to 1 mm
[5,7,9] and, therefore visualization of neural structures
such as neurons, glial cells, and blood vessels led to new
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insights in developmental and degenerative neurobiology
as well as neuronal plasticity after trauma, ischemia and
inflammation [3,10] To obtain high-resolution in vivo
images even in deeper areas of the brain (> 500 μm),
highly ambitious surgical techniques and even use of
fluorescence microendoscopy were developed [11-13]. In
addition, combination of high speed, low power 2-PM
calcium imaging with patch recodings allow monitoring of
spine function [14] and long term neuronal network activity
[15]. The availability of various transgenic mice expressing
fluorescent proteins in particular cell types [2] enables
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Figure 1 Stereotactic frame.
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selective observation of neurons, their axons, and dendrites
in different layers [16], while simultaneously monitoring
glial cells and blood vessels [4,10,17-20]. By creating a
permanent entrance to the brain via a cranial window
[21,22] in transgenic mice, even repeated and long-term
2-PM imaging became feasible [7,8,23]. The microstructure
of neuronal tissue, e.g. dendritic spines and synapses, was
shown to be a dynamic, highly delicate process of formation
and elimination [16]. These new imaging methods will
help us to better understand the role of synaptic plasticity
after traumatic head injuries or degenerative disease.

Materials and methods
For all experiments, we used male C57/Bl6 transgenic
Thy1-YFP (H) mice expressing yellow-fluorescent protein
(YFP) in layer 5 pyramidal neurons. All experiments
required an appropriate animal experimentation facility
and needed to be conducted in accordance with the laws
Figure 2 2-photon microscope.
and regulations of the regulatory authorities for animal care.
The animal experiments presented here were approved by
and conducted in accordance with the laws and regulations
of the regulatory authorities for animal care and use in
Lower Franconia (Regierung von Unterfranken, Würzburg,
Germany; file number: 54–2531.01-20/07).

Experimental Setup

1. Operating microscope (Carl Zeiss AG, Jena, Germany).
2. Stereotactic frame (TSE, Bad Homburg, Germany,

Figure 1).
3. Heating device.
4. 2-Photon microscope (Figure 2) with multifocal

scanhead splitter (TriMScope, LaVision Biotec,
Bielefeld, Germany).

5. Anesthesia unit.
6. Custom-made head holding device (Figure 3).



Figure 3 Custom-made head-holding device.
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Surgical instruments and materials

1. Scalpel No. 15 (Aesculap, Tuttlingen, Germany).
2. Microsurgical blade (Surgistar #38-6961; Surgistar,

Vista CA, USA).
3. Scissors (delicate curved sharp scissors; Aesculap,

Tuttlingen, Germany).
4. Microdrill with diamond tip (diameter 1.5 - 3 mm;

Figure 4).
5. Cyanoacrylate (Sigma-Aldrich Chemie GmbH,

Steinheim, Germany).
6. Dental acrylic (Dentsply, York, PA, USA).
Figure 4 Diamond micro-drill tip.
7. Custom-made cover slips (diameter 5 mm, thickness
1 mm).

8. Low-melting point agarose (1%, Sigma Type III;
Sigma-Aldrich Chemie GmbH, Steinheim, Germany).

9. Sterile irrigation (e.g. sodium-chloride 0.9%, B.Braun,
Melsungen, Germany).

10. Forceps (anatomical tips, straight or curved;
Aesculap, Tuttlingen, Germany).

11. Needle holder (Aesculap, Tuttlingen, Germany).
12. Sterile suture material (Prolene 4.0, Vicryl 4.0;

Ethicon, Norderstedt, Germany).
13. Anesthetics (xylazine/ketamine, isoflurane).



Figure 5 Exposed mouse skull.
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14. Cottonoids, swabs, gloves, and eye ointment
(e.g. dexpanthenol).

Methods and results
In the following section, we describe two different tech-
niques to create a cranial window and illustrate the im-
aging setup. For surgery, all mice were anaesthetized with
intra-peritoneal injection of 0.1 mg/g ketamine (Ketanest-S
25 mg/ml; Pfizer, New York, NY, USA) and 0.005 mg/g
xylazine (Rompun 2%; Bayer Health Care, Leverkusen,
Germany). The depth of surgical anesthesia was verified
before starting surgery and the mouse head was fixed
Figure 6 Craniotomy over right parietal bone, bone flap still in situ.
in a stereotactic frame (Figure 1). For in vivo imaging,
mice were anaesthetized with isoflurane (Isofluran, Baxter,
Deerfild, IL, USA) via a facial mask and the head was re-
strained in a custom-made head-holding device (Figure 3).

Open-skull window
After fixation of the anaesthetized mouse in a stereotactic
frame and application of eye ointment, a midline incision
of the scalp was performed. Scalp and underlying perios-
teum were gently removed from skull bone with cotton
swabs and the scalp was fixed laterally with two tack-up
sutures (Figure 5). After localization of the region of



Figure 7 Glass cover slip fixed with cyanoacrylate and dental acrylic.
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interest (−1.5 mm bregma, 1.5 mm lateral), a craniectomy
with the microdrill was carried out under the microscope
and intermittent irrigation with sterile saline. Special care
had to be taken before drilling away the last bone layer to
avoid inadvertent injuries of the dura mater (Figure 6).
Then, the exposed dura was covered then with fresh and
sterile low-melting point agarose and a custom-made glass
cover slip (diameter 5 mm, thickness 1 mm) was gently
placed over the craniectomy and fixed with dental acrylic
and cyanoacrylate (Figure 7). The crucial point here was
to create a smooth agarose surface to prevent air bubbles
Figure 8 Thinned-skull cranial window.
between the agarose and the cover slip as well as averting
fluid and sticky cyanoacrylate getting on the cover slip.
Dental acrylic should be applied also on the exposed skull
surface and the wound margins (the skin was not closed
after the surgery). A strong micro magnet could be fixed
in the dental acrylic for an alternative way to fix the head
at the custom-made head holder instead of gluing it with
cyanoacrylate repeatedly for long-term imaging (this could
prevent cracking of glass cover while disconnecting the
head from the head holder). After a recovery period of 14
days, imaging session could be started.



Figure 9 Mouse in head-holder under 2-photon microscope.
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Thinned-skull window
After restraining the mouse head in a stereotactic frame,
the scalp was incised in the midline. Periosteum was softly
separated from underlying bone with cotton swabs.
The selected skull area (center of window 1.5 mm

dorsolaterally of the bregma and the midline) was now
carefully thinned in a circular area with the microdrill
under the microscope until internal compact bone layer was
reached (Figure 8). Generous irrigation is recommended
for a clear view and to minimize the risk of heat-induced
tissue injury. In the following step, the bone was continu-
ously thinned in a cautious way with a microsurgical blade
until the bone get so far thinned that cortex and vessels
Figure 10 Meningeal blood vessels (video camera image).
became visible. This procedure requires patience and
dexterity because pushing and scraping to hard could
damage brain and vessels, which leads to bleeding and
inflammation or could even break the bone. Afterwards,
one can start in vivo imaging immediately. Otherwise,
the skin was sutured and the mouse was allowed to recover.
For imaging sessions it is necessary to re-thin the skull with
the microsurgical blades or to remove scar tissue.

In-vivo imaging
For the imaging sessions, the mice were anaesthetized
and the head was fixed in the custom-made head holder
by gluing the skull to the triple razor blades with



Figure 11 Cortical vessels under the 2-photon microscope.
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cyanoacrylate to reduce respiration-induced movement
artifacts. The animal was placed on a heating plate
under the two-photon microscope with multifocal scan
head splitter (Figure 9). To facilitate relocation of the
imaged area, a high-quality picture of the cortex sur-
face with meningeal blood vessels was obtained with a
CCD camera (Figure 10). The Ti-sapphire laser was
then tuned to optimal excitation wavelength for yellow
fluorescence protein (890 nm). Images were acquired
Figure 12 Rhodamine-dextran (red) filled cortical microvessels and Th
viewed through a thinned skull cranial window.
by using a 20x, 0.95 NA, water-immersion objective
(Olympus, Tokyo, Japan) in an imaging depth of 100–200
μm from the pial surface (Figure 11 and Figure 12).
Two-dimensional projections of three-dimensional image
stacks containing dendritic segments of interest were
saved for further analysis. One of the difficulties in re-
peated imaging lies in preserving the cranial window in
appropriate condition and to ensure exactly the same
region of interest.
y1-YFP labeled dendritic processes (green) in parietal cortex as
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Outlook
In this article, we provide a thorough methodological
description of in vivo imaging of neuronal and vascular
structures via two types of cranial windows. In experi-
enced hands and with an established setup of two-photon
microscopy, this method is a suitable tool for highly ambi-
tious in vivo research, especially in the field of neurotrauma,
neurodegenerative disorders, and neurovascular disease.
The LaVision system was optimized for our application
but the method is applicable for all two photon micro-
scope systems. One of the advantages of the open skull
method is that there is only one single surgery compared to
multiple re-thinning procedures of the skull (and therefore
multiple re-openings of the skin), an easier re-location of
the same region of interest, and a higher penetration
depth. However, the preparation of the open-skull window
is demanding and bears a higher risk of dural tears and
cortical injuries due to pressure or direct penetration. In
addition, a damaged cover slip or opaque agarose layer
could impair imaging results. Xu et al. reported a higher
inflammation rate in neuronal tissue in the open-skull
window with an increased turnover rate of dendritic
spines [22]. Both models allow a “live” view on intracranial
structures, not only on the surface of the brain, but even
in deeper regions of neuronal tissue, and the possibility of
long-term imaging.
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