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Abstract

through the internal carotid artery.

proved in all 18 surviving rats.

Introduction: Although there are many experimental studies describing the methodology of the middle cerebral
artery occlusion (MCAQ) in the literature, only limited data on these distinct anatomical structures and the details of
the surgical procedure in a step by step manner. The aim of the present study simply is to examine the surgical
anatomy of MCAO model and its modifications in the rat.

Materials and methods: Forty Sprague-Dawley rats were used; 20 during the training phase and 20 for the main
study. The monofilament sutures were prepared as described in the literature. All surgical steps of the study were
performed under the operating microscope, including insertion of monofilament into middle cerebral artery

Results: After an extensive training period, we lost two rats in four weeks. The effects of MCAO were confirmed by
the evidence of severe motor deficit during the recovery period, and histopathological findings of infarction were

Conclusion: In this study, a microsurgical guideline of the MCAO model in the rat is provided with the detailed
description of all steps of the intraluminal monofilament insertion method with related figures.
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Introduction

Rat models of focal cerebral ischemia are widely used in
experimental studies aiming at the elucidation of patho-
physiological mechanisms of stroke and the evaluation
of new therapeutic approaches in the treatment of occlu-
sive cerebrovascular diseases [1-12].

Among the endovascular techniques of middle cerebral
artery occlusion (MCAO), the suture occlusion method is
the most frequent experimental paradigm that has been
used over the last 20 years [13]. The basis of this proced-
ure consists in the blocking of the blood flow into the
MCA with an intraluminal suture (nylon monofilament)
inserted through one of the big arteries of the neck, as
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described before [6,13-16]. If properly performed, this
technique provides reproducible MCA territory infarc-
tion [4,14,15,17]. It allows transient occlusion with fol-
lowing cerebral reperfusion by retracting of the suture and
thereby, different levels of lesion severity depending on
the occlusion time can be obtained [12,18-24].

Albeit its common use, getting started with this model
in research is difficult. Therefore, we provide here the de-
tailed description of all steps of the modified intraluminal
monofilament method with an array of related figures.

Materials and methods

All surgical procedures were performed in accordance
with our institutional guidelines and the German animal
protection legislation, under the operating microscope
(SMED-Studer Medical, Engineering-AG, Switzerland
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Yasargil System, VM-900) Female Sprague-Dawley rats
(250 to 280 grams) were housed under 12-h light/12-h
dark conditions; under temperature of 22-24°C and with
food and water ad libitum. The animals were allowed to
acclimatize for 2 weeks prior to experiment and were fasted
overnight with free access to water, before the surgery.

The animals were anesthetized by 10 mg/kg i.p Ketamine
hydrochloride (Ketamine® 10% Essex Pharma GmbH,
Germany) and 5 mg/kg ip Xylazine hydrochloride
(Rompun’, Bayer AG, Germany) given intraperitoneally.

The animals were not intubated and blood gases were
not monitored during the MCAO.

All procedures were in concordance with German ani-
mal law regulations. The animal protocol granted by the
Regierungspraesidium Freiburg as well as the ethical
commission of the Faculty of Medicine in the University
of Freiburg gave ethical permission to perform the de-
scribed experiments.
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Surgical technique

We used the following modified surgical procedures
which originally were described by several authors
[2,6,13,14,16,19,25-27]. Under the operating micro-
scope, a longitudinal cervical midline incision (approxi-
mately 2 ¢cm, Figure 1A) through subcutaneous tissue and
platysma (Figure 1B) was made. The rostral part of the
aponeurosis of digastric muscle (Figure 1C and D) is a
good marker allowing the precise localization of the CCA.
A self-retaining retractor was positioned between the
digastric, sternomastoid and sternohyoid muscles [23,28],
(Figure 2A). The omohyoid muscle was gently moved
downward to expose the right CCA (Figure 2B). Precise
dissection of the perivascular structures (fascia, ad-
ventitia and sympathetic plexus) around CCA and ECA
(Figure 3A) using the sharp curved forceps was per-
formed. Greatest care was taken in this step to avoid ex-
cessive manipulation or lesion of the surrounding neural

sternohyoid muscle (SH), (D).

Figure 1 Location of the skin incision visualized by surgical marker (A). Dissection of platysma and subcutaneous fatty tissue (B).
Preparation of right and left digastric muscles (DG), (C). Preparation of the rostral (r) and caudal (c) part of the right DG and the
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Figure 2 Retractor between the caudal part of the DG and the Sternomastoid muscle (SM) laterally and the SH medially. Omohyoid
muscle (OH) overlapping the right CCA (A). Caudal mobilization of the OH displays the right CCA (B).

structures, especially nervus vagus located laterally to the
CCA (Figure 3B). In case of bleeding from subcutaneous
tissue and surrounding veins, monopolar coagulation has
been used.

The common carotid artery (CCA) was hung up
(Figure 4A) with a 6/0 silk suture kept by a haemo-
static forceps. The ECA and the OA originating as the
first branch of the ECA very close to the bifurcation were
hung up together. Then, the ICA was isolated and carefully
separated from the lateral adjacent vagus nerve and also
hung up by silk suture (Figure 4B). For further dissection
of the ICA in the proximity of the skull base, the hyoid
bone was carefully lifted with a curved forceps. Here, the
PPA, which is the sole extracranial branch of the ICA and
its adjacent neural structures, the ansa of the hypoglossal
nerve [29], were clearly displayed (Figure 5A,B).

The PPA was clipped with a temporary microvascular
clip as described by Kawamura et al. [30], close to its

origin from the ICA (Figure 5C). To allow easy intro-
duction of the monofilament into the MCA, the clip was
positioned as close as possible to the ICA on the PPA.
Afterwards, CCA as well as ECA together with the OA
were ligated and subsequently hung up (Figure 6A). A
second temporary clip was positioned on the ICA dis-
tally of the silk suture (Figure 6B) leaving the biggest
distance possible in between. This would later allow
pushing the monofilament safely 5-10 mm inside the
ICA before removing the temporary clip. Here, it can
be transiently fixated by pulling up the nylon suture
which provides a crucial advantage as it prevents dis-
location of the filament by retrograde blood flow. Blood
loss can be reduced or even entirely prevented by this
method.

Now, a small incision (arteriotomy) was made by micro-
surgical scissors on the CCA approximately 3 mm prox-
imal of the carotid bifurcation [31] (Figure 7A), and the

ECA very close to the bifurcation of the CCA (B).

Figure 3 Identification of anatomical structures: Vagus nerve (VN) located laterally to the CCA (A, B). occipital artery (OA) originating from
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Figure 4 CCA and ECA hung up by silk suture (A). ECA and OA hung up together, mobilization of the VN, ICA hung up with silk suture (B).

poly-L-ornithine coated filament was inserted into the
ICA through the CCA (Figure 7B). Next, the clip on the
ICA was removed and the filament was carefully further
advanced for approximately 16 to18 mm until mild resist-
ance was felt [2,6,26,32-34], indicating that the tip
was lodged in the anterior cerebral artery and thus blood
flow to the MCA was blocked, as reported previously
[14,19,27,33]. Afterwards, the occluded ICA (with the
intraluminal monofilament) was ligated distal to the CCA
bifurcation with the 6/0 silk suture (Figure 8). After care-
ful haemostasis the skin incision was closed, leaving 2 cm
of the nylon filament protruding. The whole procedure
took 20 to 30 minutes for each rat. Animals were allowed
to wake up, and clinical evaluation of the lesion was per-
formed. Recovery of consciousness occurred within 30-60
minutes after the operation in all animals.

For temporary MCAO, reperfusion was obtained by
withdrawing the suture approximately 13—-15 mm after
the ischemia time chosen for the experiment until resist-
ance was felt when the tip reached the ligation of the
ICA. In the present study, we chose an occlusion
time of 60 minutes. The method allows reperfusion of

the two distal branches of the ICA; the anterior choroidal
and hypothalamic arteries [31,35,36], preventing the pos-
sible loss of the experimental animal, as the hypothalamic
artery occlusion contributes to hyperthermia after intra-
luminal suture occlusion which is related to more
pronounced ischemic damage and postoperative mor-
tality [36].

Intraluminal suture preparation

The suture was prepared from a 5 cm-long part of a sterile
4/0 nylon monofilament (Ethilon Nylon Suture, Ethicon
Inc. Germany). One end of the suture was rounded
carefully by melting with a portable electrocautery unit
(Harvard apparatus Ltd, Germany). The end of the suture
was therefore kept inside the electrocautery ring for
several seconds. Tip diameter was standardized to 0,38-
0,40 mm using a micro forge (Narishige MF 900, Japan).
To obtain intraoperative control on the length of the
intraarterially introduced monofilament, we have marked
the proximal 20 mm of the suture with sterile permanent
marker in 5 mm distances (Figure 9A,B). To increase the
adhesive properties of the nylon suture, it was coated

e

(HgN), (B). Clip positioned on PPA (C).

Figure 5 Preparation of the pterygopalatine artery (PPA), (A). Dissection of the distal ICA and lateral mobilization of the hypoglossal nerve
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Figure 6 Ligation of the CCA and ECA/OA (A). Second clip positioned on the distal part of the ICA (B).

with Poly-L—Ornithine (PLO, Sigma Aldrich, Germany)
by immersing in 1%-PLO solution overnight at room
temperature as described previously [1].

Surgical tools
Disposable scalpel No. 10 (Feather company, Japan), 4/0
nylon suture and 6/0 silk suture (Ethicon Inc. Deutsch-
land), Wullstein retractors (No. 17018—11), adson forceps
(No. 91106-12), MORIA forceps (Straight, No.11370-40)
MORIA forceps (Curved, No. 11370-42), Micro-Mosquito
(Straight, serrated, No. 13010-12), Hartman Hemostatic
forceps (No. 13002-10), Student iris scissors, Straight
No. 91460-11), MORIA spring scissors (Straight, No.
15396-00), 2 micro clips (curved serrefines No. 18055—-01
and straight serrefines No.18055-05) Micro-clip applicator
(No. 18056-14), Michel suture clips (No. 12040-02), Ap-
plying forceps for Michel suture clips (No. 12018-12), Ear
punch for animal identification (No. 24210-02) were from
EST (Fine Science Tools GmbH, Germany) catalogue.

The illustrations were acquired with the digital camera
D2Xs (Nikon, Japan) equipped with the objective NIK-
KOR AF-S 300 mm /2,8G ED VR II (Nikon, Japan).

Results

Learning experience and potential pitfalls

In a preliminary experiment, 20 rats have been operated
and 15 of them died either during the operation or
within the first 24 hours (mortality rate of 67.5%). Ten
rats died due to intracerebral hemorrhage as revealed by
the post-mortem examination of these animals caused
probably by the perforation of the ACA beyond the ost-
ium of the right MCA during insertion of the monofila-
ment [6,21]. Three rats died due to bleeding from the
big vessels of the neck during early stages of the oper-
ation, and two died because of cervical haematoma or
haemorrhage leading to compression of the trachea, vas-
cular and neural structures. After extensive training in
the separate group (n=20) we lost only two rats (surgi-
cal success rate was 90% (n = 18), and mortality rate was
10%). One animal died due to intracerebral haemorrhage
(complication of monofilament insertion), and the other
due to ICA bleeding, while we introduced the monofila-
ment through the CCA. 18 of 20 rats survived at least
four weeks. All of the surgeries in this study were per-
formed by trained neurosurgeons with extensive micro-

Figure 7 CCA-arteriotomy below the bifurcation (A). Monofilament insertion (B).
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Clips on PPA and ICA removed.
.

Figure 8 Monofilament advanced beyond the PPA into the cranial part of the ICA (ICAc) leading to the skull base and ICA ligation.

J

surgical experience and a neurosurgery-resident in the
second year of the training. Nevertheless, the relative
small experience with the rat extracranial vascular anat-
omy and intraluminal placement of the filament resulted
initially in the high rate of perioperative mortality. The

length of the necessary training depends clearly on the
surgical experience of the investigator. Previous micro-
surgical skills unequivocally facilitate a fast development
of the MCAO model. In our hands the crucial modifica-
tion contributing to the safe and reliable occlusion of

-

tip (B).

Figure 9 Poly ornithine coated monofilament marked with white permanent marker in 5 mm distances (A). Rounded and size-standardized

N
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the MCA and reproducible stroke induction within its
perfusion territory was the temporary closure of the PAA
preventing an erroneous insertion of the filament into the
extracranial ICA branches. Apparently this maneuver has
also been applied by researches introducing intraarterial
catheters for experimental, intracerebral drug/cells deliv-
ery (personal communication P. Walczak/M. Janowski,
Johns Hopkins University, Baltimore, USA).

The effects of MCAO were confirmed by the evidence
of motor neurological deficit (four points according to
the applied scale as shown in Table 1, Figure 10) and
histopathological findings of infarction (not shown) in
all surviving rats. Interestingly, during the initial training
period we could observe a clear dependence of the area
of infarction on the time of the MCA occlusion. When
the filament was kept in the lumen of the MCA for
of up to 30 minutes it resulted frequently in an iso-
lated insult within subcortical structures (CPU) whereas
longer closure of the vessel produced larger infarct areas.
After an hour of occlusion we could constantly observe a
complete cortico-subcortical localization of the stroke. Al-
though not performed in our study, also body temperature
monitoring plays a crucial role concerning the reproduci-
bility of the size of the infarcted brain tissue. Hypothermia
exerts a neuroprotective influence and therefore can
adversely affect the MCAO model leading to dimin-
ished magnitude of tissue infarction [37]. Therefore, as-
suring the normothermic perioperative conditions applying
i.e, a feedback controlled heating pad, which warms ac-
cording to the rectal temperature of the animal, is highly
recommended.

Functional outcome

The neurological examination was carried out after full
recovery from anesthesia. The rats were assessed for
contralateral motor deficit to confirm ischemia by using a
previously described scoring method (Table 1) [20]. In the
present study, all surviving animals showed clear neuro-
logical motor deficits within the first two hours after
MCAO (100% percent with score 4).

During the recovery period, all surviving rats showed
also forelimb flexion and contralateral forelimb paralysis,
confirming the permanent damage following temporary
brain ischemia [18].

Table 1 Neurological evaluation of rats after MCAO [29]
Score

Evaluation

0 No apparent deficit
1 Contralateral forelimb flexion
2 Decreased grip of the contralateral forelimb while tail pulled

3 Spontaneous movement in all directions; contralateral circling
only if pulled by tail

4 Spontaneous contralateral circling
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Figure 10 During the recovery period, all surviving rats showed
contralateral forelimb paralysis following temporary
brain ischemia.

Discussion

To produce focal ischemia, the occlusion of the MCA has
been the target of most investigations, because this vessel
is the most commonly affected in stroke victims [38]. This
model has been first introduced by Koizumi et al. [13],
and later modified by Longa et al. [14]. Numerous further
modifications of this method have been reported in the lit-
erature [2,14,15,19,21,25-27]; however, the literature de-
scribing the important microsurgical hallmarks of the
MCAO and identifying the critical steps and highlighting
the possible pitfalls of the surgical technique is very scarce.
For MCAQ, the filament may be inserted through the
ECA, ICA or CCA [6,8,14,21,24,26,27,32,39,40]. Alterna-
tively to the method we applied, MCAO is frequently pro-
duced by insertion of the monofilament through the ICA
to the origin of the MCA via the ECA. This technique re-
quires coagulation or ligation of the OA [36]. Another sig-
nificant difference between our operation technique and
those described by many other authors is the thorough
closure of the PPA that represents a substantial step in
our operation protocol. It guarantees the insertion of the
monofilament fiber directly into the MCA.

To insert the monofilament through ECA, further dis-
section of the ECA and its branches is required. Insert-
ing the monofilament through CCA, we minimized the
dissection of the ECA and its branches in the area of the
carotid bifurcation. Moreover, ligation of CCA facilitates
introduction of the monofilament and reduces active
hemorrhage and hematoma formation during and after
the procedure. The disadvantage of CCA ligation is to
provide cerebral blood flow through anterior communi-
cation artery instead of ICA.

Along with many advantages like its simple technique,
the minimal invasive nature of the procedure, low mortality
and redundancy of a craniotomy [41], all the intraluminal
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suture models of MCAO share the same disadvantages:
insertion of the suture occludes the entire course of the
ICA, leading to obstruction of the hypothalamic artery
(HA). This causes hypothalamic infarction with associated
pathologic hyperthermia that confounds the results of the
investigation, for instance neuroprotective drug evaluation
[6,38,42]. Finally, the anterior choroidal artery can be oc-
cluded by the filament, while the lumen of the MCA still
allows perfusion. This may cause clinical stroke signs
mimicking MCAO. Some other unwanted side effects of
this method are subarachnoid hemorrhage, intraluminal
thrombus formation, and premature reperfusion [6,21,30].
When carefully carried out, sharp dissection allows a fast
and easy approach to the vessels securing their pro-
tection at the same time. We suggest reducing the inter-
ventions on the vessels and their surrounding structures
to a minimum, especially manipulations on the ECA and
its branches. As a technique to reduce tissue damage, we
strongly recommend the use of a temporary microvascular
clip for the occlusion of the PPA as described before [43]
instead of a ligation.

Ischemic stroke is a very heterogeneous disorder. In
this respect, mimicking all aspects of human stroke in
one animal model is not possible. Although ischemic
stroke was shown clinically and histologically in this
study, volume of infarcted tissue was not measured. If
volume of infarcted area could be measured on histo-
logic sections or MRI, the results might be more object-
ive. However, the study was focused on describing the
methodology of surgical MCAO, and volume measure-
ment was not planned.

Another limitation of the study is that, some physio-
logical data, such as blood gases and body temperature of
animals, were not measured during MCAO experiment.

Intraoperative Doppler ultrasonography could be use-
ful for measurement of cerebral blood flow, however
Doppler ultrasonography was not available during the
procedure unfortunately.

It is well known that there is a learning curve for a
MCAO model. Therefore, before the study, 20 rats were
used for training and detailed description of surgical
technique. We focused on the occlusion technique and
evaluated the results of MCAO on clinical and histological
findings. We believe that if all steps of this method is
applied correctly, the procedure is sufficient for MCAO
in rats.

In conclusion, we present a modified surgical technique
for intraluminal MCAOQO. In comparison to methods de-
scribed by other authors, our procedure avoids the divid-
ing of the omohyoid muscle. We showed that a gentle
dissection and efficient distraction is sufficient to reach
the relevant anatomical structures. Furthermore, we re-
duced the dissection of the ECA and its branches to a
minimum in the area of the carotid bifurcation. In our
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procedure, we did not coagulate the OA but ligated it to-
gether with the ECA as this saves time and reduces tissue
damage. As mentioned above, we found the microvascular
clip to be an excellent way to close the PPA greatly facili-
tating the introduction of the filament if positioned cor-
rectly. We recommend placing it on the PPA as close as
possible to the origin of this vessel from the ICA.

Conclusion

The presented study demonstrates that the microsurgical
filament occlusion of the MCA can be easily performed
in rats by the above described procedure following some
intensive microsurgical training. This modified surgical
approach is simple and can be followed easily by the
microsurgical guidelines and landmarks provided here.
This may promote experimental approaches in stroke
that may ultimately advance the scientific progress in ex-
perimental, and potentially, also clinical forms of cere-
brovascular diseases.
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