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Abstract
G-CSF is widely employed for the treatment of chemotherapy-induced neutropenia. Recently,
neuroprotective effects of G-CSF in animal stroke models were discovered including infarct size
reduction and enhancement of functional recovery. The underlying mechanisms of action of G-CSF
in ischemia appear to be a direct anti-apoptotic activity in neurons and a neurogenesis inducing
capacity. Additional effects may be based on the stimulation of new blood-vessel formation, the
stimulation of immunocompetence and -modulation as well as on bone marrow mobilization. In
addition to a discussion of these mechanisms, we will review the available preclinical studies and
analyze their impact on the overall efficacy of G-CSF in experimental stroke.

Introduction
Granulocyte-colony-stimulating factor (G-CSF) was iden-
tified among a set of humoral factors on which the sur-
vival, proliferation, and differentiation of hematopoietic
cells in cell culture assays is dependent [1,2]. After purifi-
cation of the murine G-CSF more than 25 years ago its
human analogue was discovered [1]. The complete species
cross-reactivity [3] of the human and the murine G-CSF
molecule exhibits a strong evolutionary conservation and
emphasizes its importance for white blood cell regulation.
A decade after its identification, G-CSF was approved by
the FDA for prevention and treatment of chemotherapy-
induced neutropenia and apheresis for hematopoietic
transplantation [4,5]. Much interest focused on the use of
G-CSF as a neuroprotective candidate when its infarct size
reducing capabilities in animal stroke models were dis-
covered in the year 2003 [6-8]. Beyond its initially as key
protective mechanism assumed capability to mobilize
bone marrow stem cells, a deeper understanding of G-

CSF's action in stroke pathophysiology has been devel-
oped. This review focuses on the neuroprotective and neu-
roregenerative properties of G-CSF in animal models of
focal cerebral ischemia. In addition, the evidence and effi-
cacy from preclinical studies as the basis for current clini-
cal trials is reviewed.

Mechanisms of action of G-CSF in ischemic injury
Mobilization of stem cells
G-CSF's natural function of mobilizing stem cells from
the bone marrow triggered initial explorations of its
potential usefulness in stroke with the idea that mobilized
stem cells may home into the injured brain [9]. A series of
preclinical investigations in animals using G-CSF for the
therapy of ischemic stroke was initiated to answer the
question whether mobilized bone marrow cells contrib-
ute to improved outcome [9-11]. The capacity of bone-
marrow derived cells to restore function in the injured
brain has indeed been demonstrated (for review see [12]),
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but the mechanism of their advantageous action remains
unclear. The proposed transdifferentiation of bone mar-
row derived cells into neural cells that induce functional
and structural recovery poststroke was recently doubted
by several studies (e.g. [13,14]). The assumption that G-
CSF mobilized bone marrow cells might have caused the
observed functional improvements was also propagated
by Shyu et al [11]. However, dividing cells in the ischemic
hemisphere, mainly seen in the subventricular zone, were
presumably originated from adult neural stem cells con-
cordantly with results from other groups [7,10]. Komine-
Kobayashi and colleagues [15] subjected chimeric mice
with EGFP-expressing bone marrow-derived cells to tran-
sient occlusion of the middle cerebral artery. The authors
report that indeed migration of bone-marrow derived
monocytes was not increased at all after G-CSF treatment,
but rather decreased. So far not evidence proven is
another bone marrow cell mediated mechanism. G-CSF
may induce invasion of bone-marrow-derived stem cells
into the infarcted brain which could contribute to
enhanced neuro- and angiogenesis by secretion of neuro-
trophines and other trophic factors [12]. In conclusion the
recent evidence from animal experiments cast doubt on
the perception that mobilization of stem cells is the sole
or even most important mechanism of action for func-
tional recovery after G-CSF treatment.

Anti-apoptotic activity
A first indication of a potential direct effect on cells of the
brain came from the observation that G-CSF had a direct
protective effect in cultured neurons against glutamate-
induced cell death [6]. After cerebral ischemia, endog-
enously released G-CSF is presumably active on the upreg-
ulated G-CSF receptor in periischemic regions at risk, the
so called penumbra, and may provide protection against
apoptotic cell death in neurons (figure 1). Schneider
showed that after interaction with its receptor, G-CSF acti-
vates through JAK signalling, three independent anti-
apoptotic pathways: The signal transducer and activation
of transcription (STAT)-3, the extracellular-signal-regu-
lated kinase (ERK) and the phophatidylinositol 3-kinase
(PI3K)-Akt pathway [7]. Komine-Kobayashi also found
antiapoptotic effects of G-CSF on neurons after cerebral
ischemia through the JAK/STAT signaling pathway and
subsequent activation of Bcl-2 [15]. Moreover, G-CSF
increased cIAP2 levels in the ischemic cortex and thereby
decreased the activation of caspase 3, an important trigger
of apoptotic processes [16]. In a rat model of intracerebral
hemorrhage G-CSF's antiapoptotic activity in cells in the
perihematomal area was revealed by a TUNEL assay,
which detects less DNA fragments as a result from apop-
totic signaling cascades after G-CSF treatment [17].

Neurogenesis
Neural progenitor cells reside for a lifetime in certain areas
of the brain, particularly the subventricular zone (SVZ),

the olfactory bulb and the hippocampus. Certain condi-
tions such as stroke induce the generation of new neurons
from precursor cells, a phenomenon which may poten-
tially be utilized to restore brain function. G-CSF's most
striking effect regarding neurogenesis was seen in the den-
tate gyrus, where the number of newly generated neurons
under ischemic conditions [7,10,11] but also in
nonischemic, sham-operated animals was increased. In
the striatum there was only a trend toward an enhanced
neurogenesis after G-CSF treatment which was not statis-
tically significant and the number of newly generated cells
was rather small [7]. This finding is not surprising, since
the striatum is known to habor only a low number of neu-
ronal precursors [18,19]. Generation of new differentiated
cells from endogenous stem cells is an intricate interplay
among different components such as proliferation, differ-
entiation, and selective survival. In vivo experiments
revealed that G-CSF promotes neurogenesis in all of these
components. The number of newly generated cells was
increased, the cells differentiate towards a neuronal fate
and anti-apoptotic pathways are activated [7]. The in vivo
findings of an increased neurogenesis after G-CSF treat-
ment were confirmed by in vitro experiments. It was
shown that adult neural stem cells isolated from the rat
SVZ or hippocampal region that grow as neurospheres in
culture express the G-CSF receptor [7,20]. G-CSF dose-
dependently induced maturation of cultured progenitor
cells towards a neuronal phenotype and increased the
population of the differentiated cells [7].

Angiogenesis
Angiogenesis is a process where new vessels arise from
pre-existing ones [21]. Future treatment strategies in
stroke focus on optimisation of this process in the
ischemic boundary zone [22]. However, the contribution
of angiogenesis to functional recovery after stroke is still
unclear [23-25]. Lee and colleagues showed that G-CSF
enhanced angiogenesis in a rat stroke model measured by
endothelial cell proliferation, the vascular surface area,
the number of branch points, and the vascular length
[26]. The G-CSF effect was more pronounced when treat-
ment was initiated earlier. But even when treatment was
delayed up to seven days after the induction of ischemia
an increased angiogenesis accompanied by an enhanced
long-term functional recovery could be observed [26].
Expression of the vascular marker von Willebrand factor
in BrdU positive cells after G-CSF treatment demonstrated
the generation of new endothelial cells [11]. Taguchi
found an accelerated angiogenesis measured by an angio-
graphic score without an enhanced functional outcome
[27]. However, the results of this study have to be inter-
preted with caution since immunodeficient mice were
used in which G-CSF may not exert its immunomodula-
tive properties. The immunomodulative effects are pre-
sumably important for post-stroke functional recovery, as
described below.
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G-CSF reduces infarct sizes and enhances functional recovery in stroke models by several mechanisms of action, such as the induction of anti-apoptotic pathways, neurogenesis and angiogenesisFigure 1
G-CSF reduces infarct sizes and enhances functional recovery in stroke models by several mechanisms of 
action, such as the induction of anti-apoptotic pathways, neurogenesis and angiogenesis. Thereby G-CSF acts as a 
direct protectant for neurons expressing its receptor. G-CSF's influences on immunocompetence and inflammation parameters 
are potential additional effects.
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Immunomodulation
Recent research revealed that interactions between cere-
bral ischemia and the immune system are exceptionally
relevant for the functional outcome of stroke patients
[28]. Stroke induced immunodepression can cause infec-
tions, such as pneumonia, a frequent complication in
stroke patients. However, immunodepression may poten-
tially improve stroke outcome by alleviating the autoag-
gressive responses due to ischemia-induced exposure of
central nervous system-specific antigens to the immune
system [29-31]. Thus, immunomodulation and an
increase of in immunocompetence may also be responsi-
ble for the rather acute effects of G-CSF[32] Indeed, a
reduced infiltration of neutrophils and microglia in the
ischemic hemisphere after G-CSF treatment was observed
[15,26], whereas our group could not detect such a differ-
ence between the placebo group and the G-CSF group [6].
A further analysis of inflammatory cells in the ischemic
hemisphere revealed a decreased activation of inducible
nitric oxide synthase (iNOS)-positve microglia in animals
treated with G-CSF [15]. As a consequence of the iNOS
inhibition, a reduced nitrotyrosine production as a
marker for nitrosadative stress was detected in NeuN pos-
itive cells [15]. In contrast to these immunohistochemis-
try and western blot findings there was no G-CSF induced
reduction of iNOS on the mRNA level [33]. Administra-
tion of interleukin-1 beta is known to deteriorate cerebral
ischemia and an interleukin-1 beta receptor antagonist
may neutralize this effect [34]. Thus, the reduction of the
ischemia induced interleukin-1 beta upregulation by G-
CSF may contribute to infarct size reduction [16,33].
Recently, our group showed that G-CSF suppresses MMP-
9, which is known to mediate inflammation, blood-brain
barrier breakdown with subsequent edema formation and
tissue injury in acute stroke [35].

Efficacy of G-CSF in stroke models
G-CSF in experimental stroke and the STAIR criteria
Successful testing of a candidate stroke drug in animal
models does not firmly predict efficacy in clinical studies
[36]. As a result of many failed clinical stroke trials the
Stroke Academic Therapy Industry Roundtable (STAIR)
established recommendations for the preclinical evalua-
tion of stroke drugs [37]. The STAIR criteria postulate that
the efficacy of a new drug should be demonstrated in a
variety of stroke models performed in different species
and by different laboratories. Indeed, G-CSF showed effi-
cacy in different species and different stroke models such
as transient ischemia in mouse [9,15,38,39] and rat
[6,7,11] as well as permanent ischemia in mouse [10,38]
and rat [7,8]. Moreover, G-CSF's efficacy was investigated
in animals with comorbitiy, such as diabetes and hyper-
tension, which is important, since stroke patients usually
exhibit those conditions [40,41]. As recommended by the
STAIR functional outcome in animal should be tested

besides measuring infarct size reduction. G-CSF demon-
strated an improvement in short-term [7,15,38] and long-
term [7,8,10,11,39] functional neurological deficits. Sys-
temic parameters relevant for stroke pathophysiology
such as blood pressure or oxygen saturation were not
influenced by G-CSF as measured by physiological moni-
toring of animals subjected to stroke [6,7,15]. The overall
high methodological quality of preclinical G-CSF stroke
studies was corroborated by a recent systemic analysis
[42]. Philip and colleagues found that animal experimen-
tal stroke studies of G-CSF had the highest quality in a
STAIR guideline derived quality score compared to all
other neuroprotective agents that are currently investi-
gated in clinical phase II or III trial [42].

Meta-analysis and meta-regression analysis of G-CSF in experimental 
stroke
To enhance the chance of a successful transfer of preclini-
cal data in clinical trials beyond the application of the
STAIR criteria, systematic meta-analyses of candidate neu-
roprotectants in animal experiments were conducted [43-
46]. To get an overall impression of G-CSF's efficacy in the
recently published preclinical studies and for potential
guidance of further clinical studies, we have performed a
meta-analysis and meta-regression analysis of G-CSF in
animal models of focal cerebral ischemia [47]. The meta-
analysis showed that G-CSF effectively reduced both inf-
arct volumes and sensorimotor deficits. Infarct sizes were
reduced by 42%. The reduction of infarct volumes in G-
CSF-treated animals was proportional to the infarct vol-
umes of placebo-treated animals as indicated by the
L'abbé plot [47]. This proportional infarct size reduction
demonstrates G-CSF's efficacy in milder stroke models as
well as in severe hemispheric stroke models. Sensorimo-
tor deficits which were categorized in three subgroups
(Rotarod running, neuroscore, limb function) were
improved between 24% and 40%. Our meta-regression,
which was the first meta-regression analysis of a neuro-
protective drug in animal stroke models, identified higher
doses of G-CSF to be associated with significantly smaller
infarct volumes for doses between 10 and 60 μg/kg body
weight (infarct size reduction 0.8% per one μg/kg body
weight increase in dose when applied within the first 6
hours and 2.1% per one μg/kg body weight increase in
dose when applied later than 6 hours after induction of
ischemia). Time on Rotarod was significantly extended by
2.1% and 2.2% per one μg/kg body weight increase in
dose for early and late treatment initiation, respectively.
Also, limb function and neuroscore improved signifi-
cantly when G-CSF dose was increased. This dose-
response relationship is particularly important finding
since conclusive experimental dose finding data deriving
from a singular stroke study are currently not available.
Also a critical aspect of stroke drug development is the
therapeutic time window. For G-CSF effects on infarct size
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the time window is at least 24 hours in the transient suture
occlusion model in rodents [9,11]. Regarding functional
outcome Zhao [48] reported a beneficial effect of G-CSF
when administered more than three month after the onset
of ischemia. Using a meta-regression technique we found
that a delayed treatment was as effective as an early treat-
ment initiation and may even lead to smaller infarct sizes
[47]. This result is particularly interesting since the time
window for most candidate neuroprotectants closes early
after symptom onset [49]. The potential of a much longer
time-window of G-CSF compared to other stroke drugs
might be explained by the above mentioned multimodal
actions consisting of neuroprotective and particularly
proregenerative properties.

Conclusion
Hematopoietic factors as candidate drugs for stroke treat-
ment were intensely studied in stroke models over the last
years. However, efficacy of candidate neuroprotectants in
animal experiments may not necessarily predict efficacy in
stroke patients, particularly when the preclinical experi-
ments are insufficient and incomplete. New candidate
drugs should therefore be tested in stroke models three-
fold to enhance the chance of a successful bench-to-bed-
side progress: 1. Meaningful interaction in stroke
pathophysiology, 2. Integrity regarding fulfilled STAIR cri-
teria, and 3. Efficacy analyzed in meta-analysis of animal
studies. G-CSF, as novel candidate stroke drug, widely
addresses these issues due to its multimodal mode-of-
action in combination with a broad spectrum of efficacy
in animal stroke models. Aside from this, G-CSF's has a
comprehensive safety profile as demonstrated by its clini-
cal use for many years.
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