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Abstract

The investigation of central nervous system vascular changes in the pathophysiology of multiple sclerosis (MS) is a
time-honored concept. Yet, recent reports on changes in venous cerebrospinal outflow, the advent of new
magnetic resonance imaging techniques and the investigation of immunomodulatory properties of several vascular
mediators on the molecular level have added new excitement to hypotheses centering around vascular pathology
as determining factor in the pathophysiology of MS. Here we critically review the concept of chronic cerebrospinal
venous insufficiency in MS patients and describe new imaging techniques including perfusion weighted imaging,
susceptibility weighted imaging and diffusion weighted imaging which reveal central nervous system
hypoperfusion, perivascular iron deposition and diffuse structural changes in the MS brain. On a molecular basis,
vascular mediators represent interesting targets connecting vascular pathology with immunomodulation. In
summary, the relation of venous changes to the pathophysiology of MS may not be as simple as initially described

and it certainly seems awkward to think of the complex disease MS solely as result of a simple venous outflow
obstruction. Yet, the investigation of new vascular concepts as one variable in the pathophysiology of the
autoimmune attack seems very worthwhile and may add to a better understanding of this devastating disorder.

The starting point: Cerebrospinal venous
insufficiency in multiple sclerosis?

Chronic cerebrospinal venous insufficiency (CCSVI)
describes a vascular condition characterized by anomalies
of the main extra-cranial cerebrospinal veins that interfere
with normal cerebrospinal outflow [1]. These anomalies
i.e. stenoses may affect the internal jugular veins, the ver-
tebral veins or the azygous vein and can be detected by
venous echo-color Doppler and invasive venography [1-4].
CCSVI has recently been reported at a high prevalence in
multiple sclerosis (MS) patients and proposed as a patho-
genic factor challenging the autoimmune hypothesis of the
disease [1,5,6].

The idea of MS being a vascular disease is not new. In
the 1930s T.J. Putnam proposed venous obstruction as the
primary alteration in MS [7]. Given the venotopic localiza-
tion of MS plaques, this hypothesis has been discussed on
and off ever since. In 2007 an Italian group headed by
P. Zamboni added new fuel to the fire by demonstrating
that venous blood flow alterations can be found at a high
frequency in MS patients [5]. The initial study on 89 MS
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patients and 60 control subjects was soon followed by a
second one by the same investigators addressing venous
hemodynamics in 65 patients with clinically definite MS
and 235 controls [1]. Using high resolution echocolor
Doppler sonography (ECD) and transcranial color Doppler
sonography (TCCS). Zamboni et al. defined five para-
meters that-if at least two are present-allow diagnosis of
CCSVTI ie. (1) reflux in the internal jugular and/or verteb-
ral veins; (2) reflux in the deep cerebral veins; (3) B-mode
evidence of internal jugular vein stenosis; (4) flow not
Doppler-detectable in the internal jugular and/or vertebral
veins; (5) reverted postural control of the main cerebral
venous outflow pathways. He reported that the presence
of venous outflow anomalies was dramatically associated
with the diagnosis of MS [1]. This finding was confirmed
by another study of the same group who detected CCSVI
in all of 109 MS subjects but none of the 177 controls
(sensitivity 100%, specificity 100%) [6]. Iron-driven inflam-
mation was proposed as the mechanism by which CCSVI
contributes to MS pathogenesis (see below). Analogous to
chronic venous insufficiency of the lower legs, venous con-
gestion is assumed to cause a higher transmural venous
pressure that impairs the endothelial barrier leading to
local erythrocyte extravasation. Extravascular hemolysis
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then may lead to iron deposition that attracts immune
cells and kicks off an inflammatory cascade that culmi-
nates in MS plaque pathology [8,9].

During the last years, other groups have tried to repro-
duce the pioneering work of Zamboni with variable suc-
cess (Table 1). Simka et al. reported the presence of
CCSVI in 90% of 70 MS patients under investigation
[10]. In line with that, Al-Omari and Rousan found 84%
of MS patients (n = 25) to test positive for CCSVI but
none of the controls (n = 25) [11]. However, other groups
have failed to detect this high prevalence of CCSVI in MS
questioning the concept of CCSVI as the underlying
cause of the disease [12-14]. In a study by Doepp et al,,
none of the participants (n = 56 MS patients, n = 20 con-
trols) fulfilled the CCSVI Doppler criteria proposed by
Zamboni et al. Lack of CCSVI was also reported in a
German cohort of 20 MS patients, with only one out of
20 control subjects fulfilling the CCSVI criteria [13].
Very recent data derived from a large population of MS
patients does indeed suggest a higher prevalence of
CCSVI in MS compared to controls, but at substantially
lower numbers than those found in the original publica-
tion by Zamboni et al. 56.1% of MS patients (n = 289),
38.1% of CIS patients (n = 21) and 22.7% of healthy con-
trols (n = 163) fulfilled the sonography criteria for CCSVI

Table 1 Comparison of CCSVI studies
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[15]. Yet, the presence of CCSVI was also high in patients
with other neurological diseases (42.3%, n = 26) question-
ing the specificity of CCSVI in MS [14]. Of note, the pre-
valence of CCSVI was highest in patients with
progressive MS suggesting that CCSVI may be a conse-
quence rather than a cause of disease [15]. A possible
cause-effect relationship was also challenged in a study
on CIS patients: If CCSVI played a major role in MS
pathogenesis, one could argue that it should be present
at disease onset. However, only 16% of CIS patients
tested positive for CCSVI [12]. While demographic fac-
tors like disease duration, age and sex may account for
the divergent findings between the groups, methodologi-
cal issues, operator-dependant differences in the interpre-
tation of sonography findings and difficulties in operator-
blinding may also play a role. Recognizing the shortfalls
of venous Doppler sonography, other methods for detec-
tion of CCSVI and surrogate markers of cerebrospinal
venous congestion have been evaluated. It has been
hypothesized that if CCSVI was present in MS, one can
assume an elevated intracranial venous pressure reflected
by an increased intraocular venous occlusion pressure in
MS patients [16]. Yet, a recent study on 29 MS patients
and controls failed to detect such differences in venous
occlusion pressure [16]. Others have argued that if MS

method of  no. of no. of main findings CCSVI  author  year ref
detection patients  control in MS
subjects
TCCS 89 MS 60 alterations of intracranial venous haemodynamics in MS patients + Zamboni 2007 [5]
et al.
TCCS-ECD 65 MS 235 high association of venous outflow anomalies with MS (OR43). Selective + Zamboni 2009  [6]
(+ selective (65 MS) (48) venography: multiple extracranial venous stenoses in all MS but none of the et al.
venography) control subjects
TCCS-ECD 109 MS 177 presence of CCSVI (= 2 criteria) in all MS patients but none of the controls + Zamboni 2009 [1]
et al.
ECD 70 MS n/a extracranial signs of abnormal venous outflow in 91,4% of MS patients + Simka et 2010 [10]
al.
ECD 25 MS 25 extracranial signs of CCSVI (> 2 criteria) in 84% of MS patients but none of + Al-Omari 2010 [11]
the controls and
Rousan
TCCS-ECD 56 MS 20 absence of CCSVI (= 2 criteria) in all MS and control subjects - Doepp et 2010 [13]
al.
TCCS-ECD 20 MS 20 absence of CCSVI (= 2 criteria) in all MS and 95% of controls - Mayer et 2011 [14]
al.
TCCS-ECD 289 MS 189 Higher prevalence of CCSVI (> 2 criteria) in MS (56,1%) compared to healthy — +/- Zivadinov 2011 [15]
21 CIS controls but low sensitivity/specificity et al.
TCCS-ECD 50 CIS 170 Ultrasound criteria for CCSVI in 8 CIS patients, no venous anomalies - Baracchini 2011 [12]
(selective (7 CIS) detected by venography. et al.
venography)
selective 31 MS n/a extracranial venous outflow anomalities infrequent in early MS, more +/- Yamout et 2010 [22]
venography 11 CIS prevalent in late MS al.
selective 342 MS n/a venous stenoses detected in 97% of patients previously diagnosed with + Ludyga et 2010 [23]
venography CCSVI by ultrasound al.

Recent studies addressing the presence of chronic cerebrospinal venous insufficiency (CCSVI) by high resolution echocolor Doppler (ECD), transcranial color

Doppler sonography (TCCS) and/or selective venography.
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pathophysiology was related to iron deposition in venous
congestion, this should be reflected by higher ferritin
levels in the cerebrospinal fluid as observed in siderosis
or subarachnoidal hemorrhage. However, CSF ferritin
levels were largely normal in the MS population studied
[17]. Magnetic resonance venography and flow quantifi-
cation was performed in a limited numbers of MS
patients again demonstrating no significant differences in
the extracranial venous system of MS patients and
healthy controls [18-21]. Although this may argue against
the vascular hypothesis of MS, one has to consider that
MR may just be an inadequate method for detecting
CCSVI [3,21]. Selective venous angiography is considered
the gold standard among the diagnostic tests for extra-
cranial venous stenosis (EVS). To confirm his ultrasound
findings, Zamboni et al. performed invasive venography
in 65 MS patients demonstrating multiple significant
extracranial stenoses in all patients but in none of the 45
control subjects [1]. In contrast, the rate of EVS as
shown by selective venography was significantly lower in
a study by Yamout et al. [22] who pointed out several pit-
falls in performing invasive extracranial venography that
may lead to overestimation of venous outflow anomalies:
The caliber of the internal jugular veins depends on
patient’s position, breathing (inspiration vs. expiration),
compression by nearby structures (i.e. sternocleidomas-
toid muscle, esophagus, pulsating carotid arteries) and
prominent valves, all of which can give a picture of pseu-
dostenosis [22]. Accordingly, a high operator-dependency
of the method can be assumed and it is not surprising
that again some authors report venous stenoses in up to
97% of patients previously diagnosed with CCSVI by
sonography [23], whereas others fail to do so [12].
Despite the obvious difficulties in establishing an opera-
tor-independent diagnosis of CCSVI, the vascular
hypothesis of MS has recently gained a lot of attention in
the media. Balloon dilatation of venous stenosis or stent
implantation would in theory cure CCSVI and a number
of interventional-radiologists have already started to
actively promote the so-called “liberation treatment” as a
therapeutic option in MS. Zamboni and colleagues have
performed transluminal angioplasty in 65 patients obser-
ving a significant improvement of clinical and MRI out-
come measures in an uncontrolled, unblinded trial with a
mean follow-up of 18 months that lacked a sham control
to assess placebo effects [3]. Safety and tolerability of
endovascular treatment was recently addressed in a large
trial in which balloon angioplasty was performed on 192
cases and additional stenting in another 152 cases of MS
patients [23]. The procedure was reported as relatively
safe with major complications (thrombotic stent occlu-
sion, surgical removal of angioplastic balloon from the
femoral vein) occurring in 1.5% of patients. Stent migra-
tion was observed in 2.3% of patients and few cases of
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pseudoaneurysms, gastrointestinal bleeding and atrial
fibrillation were reported [23]. However there is also
anecdotal evidence of stent dislocation to the right ven-
tricle and death from cerebral hemorrhage following
peri-procedural anticoagulation [24]. Up to now, there is
no scientific proof of efficacy of any endovascular treat-
ment in MS and patients should not be treated outside of
randomized, controlled trials [25].

In conclusion, the prevalence of CCSVI in MS patients
was reported to range between 0% to 100% depending on
the study centre and the method of detection employed.
The initially proposed specificity of CCSVI detection in
MS has been challenged by demonstrating its presence in
healthy controls and other neurological diseases. In parti-
cular both doppler sonography and selective venography
are operator-dependent and it may be difficult to ensure
operator-blinding which is a major pitfall in all positive
studies to date. A standardized technique, rigorous blind-
ing and quality control of all procedures in multicenter
studies are necessary to finally clarify the role of CCSVI in
MS. This approach is mandatory before any attempts
should be made to treat CCSVI in MS patients which at
present cannot be recommended.

The spin-off: Iron deposition and new imaging
methods for vascular changes in MS

While the concept of CCSVI as prime mechanism of MS
pathogenesis is increasingly challenged, the recent debate
on vascular changes in MS has fostered further concepts
involving vascular changes in MS pathology. Indeed, it has
long been shown that demyelinated plaques in MS are
centred around small venules [26] and that inflammatory
cell infiltrates are localised around small or medium sized
CNS veins [27]. Recently, perivascular iron deposition has
been implicated in the pathogenesis of MS. This mechan-
ism has also been proposed as a molecular consequence of
CCSVI leading to inflammation and plaque generation
although to date, this concept remains largely unproven
(see above).

In the central nervous system (CNS), iron is not only
found around vessels, but is also localized to oligodendro-
cytes. Iron ions play an important role for vital cell pro-
cesses and contribute to oxygen consumption, ATP
production, DNA synthesis and xenobiotic metabolism
[28]. Thus, iron metabolism is controlled by a large num-
ber of enzymes and proteins. A malfunction in this sensi-
tive system may result in an excess of free ionic Fe**
which is potentially detrimental to the surrounding envir-
onment and finally may lead to the generation of harmful
free radicals [29]. In the past, the functional role of iron
for myelination and demyelination has been investigated
in different animal models. Importantly, iron mediated
oxidative stress is likely involved in the pathogenesis of
demyelination [30], and venous haemorrhage with iron



Waschbisch et al. Experimental & Translational Stroke Medicine 2011, 3:7

http://www.etsmjournal.com/content/3/1/7

deposition has been reported in several demyelinating
diseases other than MS as for example Hurst acute hae-
morrhagic leukencephalitis [31]. Yet to date, there are only
few data on iron deposition in experimental autoimmune
encephalomyelitis (EAE), the model disease mimicking
many aspects of MS. Iron deposition and related infiltra-
tion of macrophages and granulocytes were observed in
SJL mice suffering from myelin basic protein induced
EAE. The source of such iron deposits might be explained
by the breakdown of the blood brain barrier permitting
iron containing plasma proteins and red blood cells to
penetrate into the brain [32]. However, on a histological
level, hemorrhagic lesions are only found in very severe
EAE, e.g. in myelin oligodendrocyte glycoprotein induced
EAE of congenic 1AV1 rats.

In first studies on specimen from MS patients in 1982,
Craelius and colleagues found iron deposits close to
demyelinating plaques in five of five MS cases, but not
in any controls [33]. In contrast, a subsequent post-mor-
tem study investigating 13 MS patients could not con-
firm this observation [34]. Adams and colleagues
analysed brain tissue of 70 MS patients and observed
that veins localised in MS plaques were more extensively
damaged than expected [27]. These alterations were
seen as deposits of fibrin and fibrinoid in the vessel
wall, frequent hemorrhages or residual hemosiderin as
evidence of past haemorrhage as well as occlusion of
plaque veins due to thrombosis, which correlated with
iron deposition in only 21 patients. Poor detection of
iron deposits in the tissue might be explained by the
staining method used. This procedure was optimized
with the help of diaminobenzamide technique [35] and
this modified protocol may enable to prove the exis-
tence of iron in a finer matrix e.g. in oligodendrocytes
[36-38].

In 1987, iron deposition in MS brains was suggested as
reduced signal intensity on T2 weighted magnetic reso-
nance (MR) images of the basal ganglia [39]. Nearly a
decade later, studies on brain autopsies from 46 patients
with definite MS revealed a significant correlation
between areas of prominent low intensity in T2 weighted
imaging and sites of iron deposition [39]. These results
were repeatedly confirmed with newer MR techniques.
Later, the extent of gray matter T2 hypo-intensity was
correlated with EDSS progression as indicator of disabil-
ity [40]. Well in line with this concept, gray matter T2
hypo-intensity and iron deposition also correlated with
the extent of brain atrophy in MS patients [41].

Nowadays, iron deposition may easily be detected
in vivo using susceptibility-weighed imaging (SWI). This
new technique (including a three dimensional, long
echo time, gradient-echo sequence) was developed in
the late 1990s and was initially employed to assess and
to depict small veins in the CNS [42-44]. Although this
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method was already well established in clinical radiology
for more than 10 years, first investigations of MS
patients were not performed until nearly a decade later.
Recently, a controversially discussed study by Zivadinov
and Zamboni correlated venous hemodynamic para-
meters and iron deposition. This pilot case-controlled
trial investigated 16 patients with a confirmed relapsing
remitting MS (RRMS). Each patient fulfilled the criteria
of CCSVI and iron deposition was significantly related
to venous obstruction as assessed by the “Zamboni cri-
teria” [1,21]. While this relation of iron deposition to
CCSVI awaits further systematic investigation by inde-
pendent groups, iron deposition may to some degree
correlate with disability and atrophy in MS patients.
Here, SWI may enable a better characterization of
lesions demonstrated by conventional MR imaging.

Today, conventional magnetic resonance imaging (MRI)
belongs to the routine diagnostic work-up of MS patients
and innovative MRI techniques have contributed to the
recognition of diffuse brain damage in MS patients.
Besides classical protocols depicting white matter altera-
tions, advanced MRI techniques such as proton MR spec-
troscopy (MRS), magnetization transfer imaging (MTR)
and diffusion tensor imaging have added valuable new
information on tissue changes in MS brains. In particular,
proton MRS and MTR have supported the concept of a
diffuse pathology involving the normal appearing white
matter (NAWM) and grey matter (GM) in MS pathology.
Moreover, perfusion weighted imaging (PWI) and diffu-
sion weighted imaging (DWI) have recently contributed to
a better understanding of vascular changes in MS patho-
physiology. The DWI technique employs the variability of
“Brownian motion” of water molecules in brain tissue. In
the brain parenchyma, their rate of movement (or “diffu-
sion”) is restricted due to tissue structures such as axons
or oligodendrocytes, respectively. Thus DWI enables the
characterisation of distinct pathological substrates and
DWT allows the detection of MS pathology in NAWM as
well as grey matter. In MS patients, diffusivity of normal
appearing grey matter is increased, and changes in diffu-
sion correlate with cognitive deficits in MS patients. More-
over, diffusion changes might be a sensitive marker for
disease progression and may thus supplement present
MRI standards [45].

Parameters of interest in perfusion weighted imaging
(PWT) include vascular mean transit time, cerebral blood
volume (CBV) as well as cerebral blood flow (CBF).
Dynamic susceptibility contrast-enhanced MRI is based
on the acquisition of images during a bolus of contrast
agent through the vessels of the brain. In the late 1990s,
the hypothesis arose that leukocyte trafficking into the
parenchyma may be initiated through a reduction of
blood flow [46]. Indeed, PWTI analyses detected a signifi-
cantly decreased cerebral blood flow of roughly 50% and
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a more than twofold prolonged mean transit time
throughout the NAWM in RRMS patients [47]. More-
over, CBF and CBV were also reduced in patients with
primary progressive MS [48]. The same phenomenon
was observed in the grey matter of MS patients which
might be caused by the same mechanism underlying the
reduced CBF in the NAWM [49]. Recently, these obser-
vations were confirmed by an independent group [50]. In
summary, hypoperfusion has been reported in lesions,
NAWM and GM of MS patients. These observations
were correlated with the disease progression of MS
patients. These data imply a possible contribution of vas-
cular changes to the generation of MS lesions in CNS
white matter: Ge and co-workers suggested that hypoper-
fusion in the NAWM may be caused by a vasculopathy in
the context of perivascular inflammation that occurs in
focal MS lesions [49]. Yet on a microscopic level, throm-
bosis of microvessels is only detected in exceptional cases
[51]. To date, it remains to be elucidated if CNS hypoper-
fusion in MS is really causally related to, or rather a
consequence of disease pathogenesis.

The molecular basis: Vascular mediators in
autoimmune demyelination

While several studies on the role of vascular changes in
MS focused on imaging techniques including Doppler
and MRI, further approaches concentrated on the role
of vascular mediators in autoimmune demyelination.
Hormones, adhesion molecules and enzymes primarily
involved in processes of vascular physiology such as hae-
mostasis, blood pressure control, angiogenesis and
endothelial functioning are often also key players in vas-
cular-immune interactions and immunomodulation.
This section outlines the relevance of two prototypic
vascular regulatory systems in autoimmune inflamma-
tion of the CNS (Figure 1), describes their potential ben-
eficial and harmful characteristics and discusses their
potential as new therapeutic targets.

Vascular Endothelial Growth Factor Signalling

Vascular endothelial growth factor (VEGF) is a heparin-
binding, pro-angiogenic glycoprotein that in humans
exists in four secreted isoforms (VEGF A-D). VEGF-A
and VEGF-B exclusively promote vascular neogenesis
via their tyrosinkinase-receptors VEGFR1/Flt-1 and
VEGFR2/KDR, while VEGF-C and VEGE-D additionally
promote lymphangiogenesis via VEGFR4/Flt-4. Herein,
VEGEF refers to VEGF-A.

There is a feed-forward interdependence of angiogen-
esis and chronic inflammation. Inflammatory mediators
induce angiogenesis. In turn, new blood vessels facilitate
immune cell migration to the site of inflammation and
increase the capacity for immune-cell adhesion, cytokine
and chemokine production [52]. The regulation of
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VEGF and its biological actions replicate this co-depen-
dence on the molecular level. VEGF expression is
induced by hypoxia, a frequent condition in inflamma-
tory lesions [53]. The proinflammatory cytokines inter-
leukin-1{3, tumor necrosis factor-alpha and interleukin-
18 [54,55] directly promote VEGF production in various
cells types. VEGF secreted by vascular endothelial cells
is chemotactic for T-cells and macrophages [56]. Vice-
versa, macrophages themselves are producers of VEGEF-
C and thereby actively influence vascular angiogenesis
and lymphangiogenesis [57]. The intracellular response
to VEGF involves the transcription factor “nuclear factor
of activated T-cells” (NF-AT) [58]. Thereby, compared
to other angiogenic factors like basic fibroblast growth
factor (bFGF) and epidermal growth factor (EGF), VEGF
activates a broader transcriptional response in target
cells and induces numerous inflammation-related genes,
such as the chemokine ligands CXCL1, CXCL2, inter-
leukin-8 and tissue-factor [58,59].

Not surprisingly, alterations in the VEGF/VEGEFR system
are observed in various inflammatory autoimmune dis-
eases such as lupus erythematosus, inflammatory bowel
disease, psoriasis, rheumatoid arthritis and MS (reviewed
in [60]). In MS, VEGF serum levels are elevated during
relapses [61] and its receptor VEGFR2 (KDR/Flk-1) is
highly expressed in active MS lesions, paralleled by an
increased number of microvessels [62]. Breakdown of the
blood-brain barrier is a significant event in MS lesions and
the capability of VEGF to downregulate claudin-5 and
occludins, key components of tight junctions, promotes
BBB breakdown in murine MOG-EAE [54]. Additional
EAE studies confirm the presence of increased angiogen-
esis and proinflammatory VEGF signalling in autoimmune
CNS inflammation [62-66]. Conversely, one study also
reports the downregulation of VEGF in astroglia of Lewis
rats suffering from EAE [67].

Anti-VEGF therapy has originally evolved as a treat-
ment against solid tumor growth and bevacizumab, a
human monoclonal antibody to VEGF has been approved
for the treatment of various types of cancer, as well as
angiogenic ocular diseases [68]. The proinflammatory
properties of VEGF render it a potential therapeutic tar-
get in autoimmune disease. Although human clinical stu-
dies on autoimmune diseases have not yet been reported,
antagonizing VEGF signalling was effective in animal
models of psoriasis [69,70], rheumatoid arthritis and [71]
MS [64]. Notably, antagonizing VEGFR-2 ameliorates
murine MOG-EAE only in the acute, but not in the
chronic phase [64] which is well in line with a predomi-
nant anti-inflammatory mode of action of this treatment.
Therefore, targeting the VEGF pathway in MS seems a
promising approach to treat the early, inflammation-
driven phase of MS (RRMS) rather than the chronic-
progressive phase of the disease (SPMS).
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Altered microcirculation

Leukocyte invasion; Iron deposition? Hypoxia?

Vascular mediators

Neovascularization
Effector cell recruitment

Figure 1 Scheme depicting the possible interplay between vascular mediators and changes in microcirculation during autoimmune
inflammation of the CNS. Altered microcirculation may lead to iron deposition and increased leukocyte infiltration. In turn, pleiotropic factors
such as vascular mediators released by immune cells and the activated endothelium can cause neovascularization and lead to the recruitment of

further effector cells. This mechanism may be part of a feed-forward loop that perpetuates the inflammatory process in MS.
L J

Renin-Angiotensin-System (Angll) from its precursors angiotensinogen and angio-
The renin-angiotensin-system (RAS) is a master regula-  tensin I through sequential cleavage by renin and angio-
tor of blood pressure, fluid balance and ion homeostasis.  tensin-converting-enzyme (ACE). Two side-pathways of
The main RAS pathway consists of a proteolytic cascade  the RAS have more recently been discovered with their
that generates the peptide hormone angiotensin II  messengers being the Angll metabolites AngIV and
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Angl-7. While the biological actions of the alternative
angiotensin peptides are still debated, the main RAS
hormone Angll is well studied with regard to its role as
a haemodynamic regulator. This effect is mostly
mediated by binding to metabotropic angiotensin II type
1 receptors (AT1). AT1 signalling in turn facilitates a
multitude of synergistic pressor effects like contraction
of vascular smooth muscle cells, renal sodium reabsorp-
tion and thirst arousal.

Through its highly pleiotropic actions, AnglII also
favours inflammatory events. It increases vascular per-
meability via the release of prostaglandins [72,73] and
VEGF [74], whereas VEGF is itself a highly pleiotropic,
inflammatory mediator (see above). Angll contributes to
the recruitment of inflammatory cells into the tissue
through the regulation of endothelial adhesion mole-
cules [75,76] and chemokines in various cell types
[77-79]. Moreover, leukocytes express a complete set of
RAS components and are capable of delivering AnglI to
inflammatory sites [78,80,81] where it may perpetuate
inflammation.

Enhanced RAS activity and AnglI levels are major cul-
prits in hypertensive disease and hypertensive end-organ
damage [82,83] Interestingly, experimental in vivo studies
suggest that T-cells are necessary to transform elevated
AngllI levels into vascular pathology [82], providing a link
to T-cell mediated autoimmune disease.

Indeed, alterations in the RAS have been detected in
MS patients including decreased CSF AnglI levels [84]
as well increased serum ACE levels [85]. RAS compo-
nents, including AT1 are specifically up-regulated in MS
brain lesions [86]. Complementing the findings in MS,
the mechanistic role of the RAS in CNS autoimmune
disease was explored in murine EAE. Antigen-specific
CD4+ T-cells strongly up-regulate AT1 following induc-
tion of disease with a proteolipid lipoprotein peptide
(PLP 139-151). Inhibition of ACE by lisinopril, an
approved drug for the treatment of arterial hyperten-
sion, led to a shift in PLP-responsive T-cell populations,
favouring expansion of regulatory T-cells over auto-
aggressive Th1/Th17 cells. Clinical symptoms of EAE
were reduced in lisinopril treated animals. This effect
was even more pronounced when T cells from either
lisinopril or vehicle-treated animals were transferred to
recipient mice prior to EAE induction [86], highlighting
a dominant role of the T cell as AnglI-target in EAE. In
a similar murine EAE model (MOG-EAE), macrophages
upregulate AT1 transcripts up to 1000-fold. Blockade of
AT1 by losartan impaired macrophage mobility in-vitro
and greatly reduced splenic macrophage cell counts as
well as the number of CNS-invading macrophages in
vivo. Accordingly, clinical symptoms of MOG-EAE were
reduced in losartan-treated animals. Notably, the
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modulation of EAE was independent of blood pressure
effects caused by the treatment [87].

In summary, elevated RAS activity is observed in MS
and anti-Angll therapy ameliorates clinical symptoms of
EAE. Direct modulation of macrophages and T-cells
contributes to the beneficial effects of anti-AngII ther-
apy in EAE. Additional contributing factors which may
include the Angll metabolites AnglV and Angl-7 cur-
rently await further exploration. Finally, the application
of long-approved anti-hypertensive drugs with a well
known safety profile as new therapeutic option in MS is
an appealing prospect.

Conclusion

While the concept of CCSVI has gained much attention
in the field of MS research and in particular among MS
patients, there is increasing evidence that the relation of
venous changes to the pathophysiology of MS may not
be as simple as initially described. Most importantly,
new MR imaging techniques add to the notion of vascu-
lar changes in MS, yet again raise doubts whether these
alterations are cause or rather consequence of the dis-
ease process. On a more refined level, iron deposition as
well as vascular mediators add to our molecular under-
standing of the complex network of autoimmune pro-
cesses which undoubtedly underlie the formation on a
demyelinating plaque in the CNS.
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