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Abstract

Bone marrow-derived mononuclear cells (BM MNC) have been effectively used to treat experimental stroke. Most of
the preclinical trials have been performed in young and healthy laboratory animals, even though age and
hypertension are major risk factors for stroke. To determine the influence of age on the properties of BM MNCs after
cerebral ischemia, we compared the efficacy of aged and young BM MNC in an in vitro model of cerebral hypoxia
and in an adapted in vivo model of stroke. Human BM MNCs were obtained from healthy young or aged donors
and either co-cultured with rat hippocampal slices exposed to oxygen glucose deprivation (OGD), or transplanted
intravenously 24 h after permanent middle cerebral artery occlusion in aged (18 months) spontaneously
hypertensive rats (SHR). Efficacy was examined by quantification of hippocampal cell death, or respectively, by
neurofunctional tests and MR investigations. Co-cultivation with young, but not with aged BM MNCs significantly
reduced the hippocampal cell death after OGD. Transplantation of both young and old BM MNCs did not reduce
functional deficits or ischemic lesion volume after stroke in aged SHR. These results suggest a significant impact of
age on the therapeutic efficacy of BM MNCs after cerebral ischemia.
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Background
Cerebral ischemia is one of the leading causes for mortal-
ity and disability in industrialized countries, and its treat-
ment is seriously restricted by a tight therapeutic time
frame. Less than 5% of stroke patients receive thromboly-
sis, primarily due to delayed clinical presentation [1].
Consequently, one of the main goals of modern stroke
research is an extension of the therapeutic time window.
Cell based therapies might fulfil this expectation, since
cells are suspected to modulate protective and restorative
effects even days after the onset of brain ischemia [2].
Bone marrow derived mononuclear cells (BM MNC) are
promising candidates for acute stroke treatment, since
these cells can be harvested and re-transplanted acutely
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in an autologous fashion [3]. An open-label prospective
study just recently showed that bone marrow harvest
and reinfusion of autologous MNCs in patients with
acute middle cerebral artery ischemic stroke is safe and
feasible [4].
BM MNC transplantation in experimental models of

brain ischemia and spinal cord injury resulted in a sig-
nificantly improved functional recovery [5–7], and the
therapeutic time window for these effects seems to be
between 3 h-72 h after stroke onset [8]. However, most
of the preclinical trials have been performed in young or
middle-aged, healthy laboratory animals - even though
age and hypertension are crucial risk factors for stroke
[9], and the susceptibility of the ischemic brain for cell-
based therapies might be altered with age. Beyond that,
age and comorbidities have to be particularly considered
if autologous approaches are intended, since not only the
receiving tissue but also the donor tissue (i.e. the bone
marrow) is subjected to aging processes and might be
altered in its functionality. In the present study we aimed
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to analyze the effect of age on the efficacy of BM MNC
transplantation for cerebral ischemia. For this, we inves-
tigated the therapeutic efficacy of human BM MNCs
obtained from aged or young donors in an ex vivo model
of hypoxia-ischemia and in an in vivo model of stroke
using aged hypertensive rats.

Methods
BM MNC preparation
Cryopreserved human bone marrow derived mono-
nuclear cells (BM MNC) from young donors (n = 4;
24 ± 4 years) were obtained from Lonza (Walkersville,
USA). BM MNCs have been isolated by Ficoll-Paque
density gradient centrifugation according to the manu-
facturer’s instructions. Aged bone marrow was collected
from healthy elderlies (n = 4; 68 ± 1 years) after informed
consent and approval by the ethics review board of the
University of Rostock, Germany. Bone marrow cells
were layered above Lymphocyte Separation Medium
LSM 1077 (PAA Laboratories, Coelbe, Germany) and
centrifuged at 800 × g for 20 min. The mononuclear
cell layer was removed and washed one time with
PBS (400 × g, 10 min). Finally, BM MNCs were resus-
pended in 10% dimethyl sulfoxide (DMSO; Merck,
Hohenbrunn, Germany) and stored in liquid nitrogen.
Prior to use, BM MNCs from both sources were thawed
rapidly and separated by 75 U/mL Accutase treatment
and washed in RPMI (PAA Laboratories, Pasching,
Austria).

Determination of hematopoietic stem cells
The hematopoietic potential of BM MNCs was deter-
mined using a methylcellulose based colony forming unit
assay. 1.1x10E5/mL cells were mixed with methylcellu-
lose, plated on petri dishes and incubated for 14 days at
37°C in 5% CO2 and 95% humidity. The colonies were
divided into burst forming units – erythroid (BFU-E) and
granulocyte/monocyte colony forming units (CFU-GM)
and subsequently counted. The amount and vitality of
CD34+ cells were quantified by FACSCalibur flow cyt-
ometer (Becton Dickinson) using 7-Amino-actinomycin
D (7AAD, BD Biosciences), an APC-coupled anti-CD34
and a PC7-coupled anti-CD45 antibody (Beckman Coulter,
Krefeld, Germany).

Organotypic hippocampal slice cultures and
oxygen-glucose deprivation
Organotypic hippocampal slice cultures (OHC) were
prepared from postnatal Wistar rats (day 8-9, Harlan-
Winkelman, Borchen, Germany) as described previously
[10]. Animals were sacrificed by decapitation. Hippocampi
were dissected and transversally sliced (350 μm) on
a McIlwain tissue chopper (The Mickle Laboratory
Engineering, Guildford, UK). OHC were transferred to
humidified 0.4 μm porous Millicell membranes (Millipore,
Morsheim, France) and maintained in 1 mL serum-based
medium (50% MEM-Hanks, 25% HBSS, 17 mM HEPES,
5 mM glucose, 1 mM L-glutamin, 25% horse serum, 0.5%
gentamycin) at 37°C for 3 days. Thereafter, OHC were
transferred to serum-free medium (50% MEM-Hanks,
25% HBSS, 17 mM HEPES, 5 mM glucose, 1 mM
L-glutamin, 25% Neurobasal-A, 0.5% B27, 0.5% gentamy-
cin) for 14 days at 37°C in 5% CO2. For pre-selection,
propidium iodide (PI; 2 μM) was added to the OHC
12 hours prior to the experiments to exclude damaged
OHC. For OGD, hippocampal slices were transferred to
six-well-plates with 1 mL of 10 mM mannitol-containing
glucose-free Ringer solution. Cultures were placed in a
gas-tight chamber at 37°C. Oxygen was replaced by
95% N2 and 5% CO2 for 10 minutes and slices were incu-
bated for another 40 minutes. Untreated controls were
maintained for the same time under a normoxic atmos-
phere in glucose-containing Ringer solution. After OGD,
OHC were returned to normoxic culture conditions. Cell
death was quantified as described previously [11].

Co-cultivation of OHC with BM MNC and analysis
of cellular damage
After OGD, slices were returned to normoxic standard
culture conditions. For indirect co-cultivation 2.5x10E4
or 25x10E4 BM MNC were seeded under the interface
cultures. After one and two days cell damage was
determined by incubating OHC with PI (1 mg/mL)
for two hours. Damage was analyzed in the cornu ammo-
nis (CA1-CA2-CA3). To ensure comparability of data,
fluorometric mean values obtained on day 1 were defined
as 100%. All other data obtained are given as relative
values.

Experimental stroke and cell transplantation
The investigation conforms to the Guide for the Care
and Use of Laboratory Animals published by the US
National Institutes of Health (NIH Publication No. 85-23,
revised 1996) and was approved by the appropriate
regional authorities (reference number TVV18/07). In
total, 33 male spontaneously hypertensive rats (SHR) at
the age of 18 month (weighing 392 ± 32 g) were subjected
to permanent middle cerebral artery occlusion as
described previously [12]. The perioperative mortality
amounted 36%. The remaining 21 SHR were randomly
assigned to one of the following experimental groups: (1)
transplantation of young BM MNCs, n = 7; (2) transplant-
ation of old BM MNCs (n = 7); (3) injection of phosphate
buffered solution (n = 7). Balanced randomization was
performed by drawing lots. Exactly 24 h after stroke
onset, 8x10E6 BM MNCs per kilogram bodyweight were
transplanted intravenously via the tail vein. Accordingly,
the control group received the same amount of vehicle
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solution at the same time. The application of cells or
vehicle solution was performed by an investigator blinded
to the group allocation.
Behavioral tests
Neurofunctional deficits were quantified by a blinded in-
vestigator using two independent functional tests. At
first, the modified Neurological Severity Score (mNSS)
[13] was ascertained on the day before stroke as well as
on days 2, 4 and 7 and weekly thereafter until day 63.
The ladder rung test [14] was carried out the day before
stroke and on days 2, 14, 28, 42 and 56. Briefly, the ani-
mals crossed a horizontal ladder with randomly mounted
rungs spacing between 1 and 5 cm. Each run was videor-
ecorded using three technical replicates and subsequently
analyzed for each step of each limb separately. In doing
so, the total number of steps and the total number of
paw placing errors was ascertained and averaged for an
animal at one time point.
Magnetic resonance imaging
Lesion development was examined in vivo using mag-
netic resonance imaging (MRI; 1.5 T Gyroscan Intera
human whole-body spectrometer equipped with a small
loop RF-Coil (47 mm), Philips) on days 1, 8, 29 and 60.
T2- weighted sequences (T2-TSE) were performed at
each MRI session consisting of 20 transverse slices
(matrix: 224 × 224; field of view: 50 mm; slice thick-
ness: 1 mm). Corrected lesion volume was calculated
by a blinded investigator as described previously [15]
and expressed as the percentage of the day 1 infarct
volume.
Figure 1 A-C. Hematopoietic potential of human BM MNCs
derived from young and old donors. We found a statistically
significant higher hematopoietic potential of young BM MNCs both
in the investigation of colony forming units for granulocytes and
macrophages (A; CFU-GM) and of erythroid burst forming units
(B; BFU-E). This observation was supported by a 2-fold decrease of
CD34+ hematopoietic stem cells in old BM MNCs (C). The vitality
of CD34+ cells in both groups was above 90% and did not differ
age-dependently (D). Values are means ± SD for 4 samples, each
comprising three technical replicates, per group. *p < 0.05, }p= 0.063
by t-test.
Statistical analysis
Data obtained from in vitro experiments, slices cultures
and MR investigations was first analyzed for normal
distribution using the Shapiro-Wilk test. According to
the distribution of data, unpaired two-tailed t-test or
Mann-Whitney U test was used to analyze statistical
differences between two groups. More than two groups
were analyzed by one-way ANOVA or one-way ANOVA
on ranks followed by Holm-Sidak or Turkey´s post hoc
test. Time series data obtained from behavioral tests were
summarized as area under the curve (AUC) [16] inte-
grating all times points later than day 2. The AUCs were
analyzed by multivariate regression models treating the
usage of young and old bone marrow and the perfor-
mance on day 2 as independent variables. The latter vari-
able is included in view of the large impact of the initial
lesion with respect to the outcome. A p-value of 0.05 or
less was considered statistically significant. All data are
shown as mean ± SD.
Results
Age-related changes in cell functionality
In the first set of experiments we examined whether age
has a significant impact on the functional characteristics
of BM MNCs. To answer this question the capacity of
BM MNCs to generate hematopoietic colonies was inves-
tigated. The ability of BM MNCs derived from young
donors with an average age of 24 years to form erythroid
burst forming units (BFU-E) and granulocyte/monocyte
forming units (CFU-GM) was significantly higher than that
from donors with an average age of 68 years (Figure 1A-B).
The flow cytometric analysis evidenced a 2-fold lower
(albeit not statistically significant, p = 0.063) amount of
CD34+ hematopoietic stem cells in BM MNCs of old
donors (Figure 1C). Vitality of CD34+ cells was above 90%
and did not differ between both age groups (Figure 1D).

Neuroprotective effects of BM MNC in vitro are
age-dependent
To determine and compare the neuroprotective charac-
teristics of old and young BM MNCs, we co-cultivated
BM MNCs with rat hippocampal slices subjected to oxygen-
glucose deprivation (OGD). PI staining was performed to
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monitor ischemia induced neural cell damage. Control
slices showed a low incidence of PI incorporating cells,
indicating a low rate of cell death. However, slices sub-
jected to OGD showed a significant increase of cell death
both after 24 h and 48 h (Figure 2). The co-cultivation
of injured hippocampal slices with young BM MNCs
resulted in a significant decrease of cell death at both
investigation time points. This effect was, however, not
detectable for aged BM MNCs (Figure 2).

Aged hypertensive rats do not benefit from BM MNC
transplantation
The influence of recipient age and comorbidities on
the efficacy of BM MNC transplantation after ischemic
stroke can only be examined in vivo. Consequently,
we performed a long-term experiment with aged spon-
taneously hypertensive rats. The efficacy of BM MNC
Figure 2 A-D. Effects of BM MNC co-cultivation on hippocampal cell d
representative illustrations of rat hippocampal slices (left column: light micr
fluorescence). Compared to untreated control slices, the reduction of oxyg
(indicated by increased PI incorporation) at 24 h and 48 h (C and D: #p < 0
cornu ammonis of the hippocampus (A and B). The co-cultivation with BM
PI-positive death cells at both investigation time points (*p < 0.001 by ANO
number of PI-positive cells. Values are means ± SD for 10 samples per grou
transplantation was continuously monitored by two func-
tional tests and by repeated measurement of the infarct
volume using MRI. The ladder rung test showed a 4-fold
increase of overall gait errors directly after the induc-
tion of experimental brain ischemia (Figure 3A). The fre-
quency of gait errors decreased over two weeks following
stroke, and remained at a stable plateau until the end of
the experiment. The area under the curve (AUC) analysis
exhibited a cumulated gait error rate of 8-10%. The AUC
was clearly influenced by the performance on day 2 (i.e.
the severity of infarct, beta = 0.5, p < 0.001), but was not
affected by BM MNC transplantation (young BM MNC:
beta = -0.01, p = 0.45, old BM MNC: beta = 0.02, p = 0.16,
see Figure 3B). As for the ladder rung test, we found a
clear increase of mNSS scores (i.e. an increase of neuro-
logical deficits) on day 2 after onset of brain ischemia.
However, contrary to the ladder rung test, we found no
eath after oxygen glucose deprivation (OGD). A and B show
oscopic micrographs; right column: red Propidium iodide (PI)
en and glucose supply caused a significant increase of cell death
.001 by ANOVA). Thereby, PI positive cells occurred primarily within the
MNCs derived from young donors effected a significant reduction of
VA). The addition of old BM MNCs did not significantly affect the
p. Scale bar: 2 mm.



Figure 3 A-D. Development of functional deficits measured by
ladder rung (A-B) and neurological severity score (mNSS; C-D).
Experimental stroke caused a significant increase of ladder rung gait
errors (A) and mNSS scores (C) at day 2. Gait errors decreased to a
plateau during the remaining experiment, while the animals did not
show any recovery of mNSS scores. The area under the curve (AUC)
analyses (B and D) did not show any statistically significant
differences between the experimental groups. Values are means ±
SD for 7 samples per group.

Figure 4 A-B Determination of the infarct volume by magnetic
resonance imaging (MRI). Representative illustrations of T2
weighted MR sequences on days 1, 8, 29 and 60 after stroke
induction (left: transversal view; right: coronal view). On the first day
after stroke, all animals exhibited a circumscribed T2 hyperintensity
within the supply territory of the middle cerebral artery. The further
development of the ischemic lesion was characterized by a decrease
of the brain edema within the first week, and an increasing
organization with scar formation over time (A). The development
of lesion volume did not differ significantly between any of the
experimental groups (B). Values are means ± SD for 7 samples
per group.
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signs for spontaneous recovery of mNSS scores during
the experimental period (Figure 3C). Again, the AUC
analysis showed no significant impact of BM MNC trans-
plantation on post-stroke sensorimotor recovery (young
BM MNC: beta = 40, p = 0.33, old BM MNC: beta = 16,
p = 0.66, see Figure 3D).
In the MR investigations, all animals showed cortical

T2-hyperintensities that were conformable with an ische-
mic lesion in the supply territory of the middle cerebral
artery (Figure 4A). Before cell transplantation or applica-
tion of vehicle solution, animals featured comparable
lesion volumes (control: 249 ± 30 mm3; young BM MNC:
207 ± 30 mm3; old BM MNC: 229 ± 36 mm3). To com-
pensate inter-individual differences in stroke occurrence,
we calculated the infarct volumes on days 8, 29 and 60 as
percentage of day 1 infarct volume. The lesion volume
decreased significantly within the first week after stroke
and remained stable until the end of the experiment
(Figure 4B). Transplantation of both young and old BM
MNCs did not affect the lesion development compared
to the control group (Figure 4B).

Discussion
The question addressed by the present study was whether
age influences the therapeutic concept of autologous BM
MNC transplantation after acute stroke. The Framingham
Study clearly demonstrated the relevance of age and high
blood pressure for the lifetime risk of stroke [9] indicat-
ing the need to mimic these risk factors in preclinical
stroke studies. Since BM MNCs offer the particular
advantage of acute and autologous transplantability, age
might influence both the patients’ susceptibility to and
the functionality of the BM MNC graft.
By comparing the neuroprotective properties of

human BM MNCs from young (24 ± 4 years) with aged
(68 ± 1 years) donors in a cell culture model of cerebral
hypoxia we found that young BM MNCs significantly
suppress hippocampal cell death after oxygen glucose
deprivation (OGD). This finding is in accordance with
another recent in vitro study that revealed an attenuated
amount of apoptotic neurons after hypoxic injury and
cotreatment with BM MNC-derived supernatants [17].
The authors discussed the release of trophic factors and
the modulation of microglia as contributing factors to
the observed neuroprotective effects.
In our hands, aged BM MNCs did not show neuro-

protective capabilities in the hippocampal OGD model.
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A BM MNC subpopulation, the bone marrow derived
mesenchymal stromal cells (BMSC) are supposed to ac-
count for antiapoptotic effects after ischemic damage
[18,19]. However, several studies revealed a decline in
BMSC numbers and fitness with age. Thus it is tempting
to speculate that senescent BM MNCs lack neuroprotec-
tive effects, as shown in the present study, due to an age-
related drop in BMSC frequency and functionality [20].
In a second step, we evaluated the therapeutic efficacy

of intravenously transplanted young and aged BM MNCs
in aged hypertensive rats (SHR). Both BM MNCs from
juvenile and elderly donors failed to decrease the lesion
volume after experimental brain ischemia. Beyond that,
functional recovery was not improved over a period of
56 days. These findings are, at least partly, in clear con-
trast to recent stroke studies demonstrating significant
benefits of BM MNC transplantation in young and
middle-aged (12 months old) healthy animals [5,6,8]. The
differing results might be explainable by age and comor-
bid status of the laboratory animals used in this study.
Aged individuals show a dysregulated cellular and genetic
response to cerebral ischemia that finally determines a
poor neurofunctional recovery. More precisely, augmen-
ted apoptosis and massive microglia activation that
induces an enhanced inflammatory response account for
accelerated infarct development in the aged brain
[21,22]. Likewise, stroke in senescent rats is associated
with a greater degree of oxidative cellular injury [23].
Another contributing factor might be the exacerbated
astrocytic reaction in geriatric stroke rats that, in turn,
impairs neurite outgrowth [24]. One of the cellular
mechanisms of neuronal plasticity after stroke is axonal
sprouting. Interestingly, aging delays the expression of
growth-promoting genes during the sprouting response
while growth-inhibitory genes are induced at earlier
stages than in its younger counterparts [25]. Of note,
enhancement of endogenous plasticity mechanisms such
as axonal sprouting and synaptogenesis, amongst others,
is considered to be a critical mode of action for cell-
based therapies [26]. Thus, the temporal mismatch of
growth-associated gene expression in the aging brain
may interfere with the plasticity-related effects of cell
therapy. Most importantly, the age-related shift of patho-
physiological sequences in stroke might require adjust-
ments of the therapeutic setting such as a prolonged
treatment period or higher dosages of BM MNCs.
Moreover, previous studies revealed that the final

infarct volume in SH rats develops rapidly within 1 h
after the onset of permanent ischemia [27]. Thus, the
lack of secondary infarct expansion in SH rats might add-
itionally account for the absence of neuroprotective
effects in this study. Unfortunately, our study is limited
by the exclusive use of aged spontaneously hyperten-
sive rats without controlling the age factor. Thus, the
discrimination between the influence of hypertension,
including its substantial impact on the cerebral micro-
vessel system [28], and age is not possible. On the other
hand, the combination of age, significant cardiovascular
comorbidities, and a relatively advanced ischemic lesion
development (sub-acute stage) describes the population
of stroke patients which would primarily be eligible for
BM MNC treatment in upcoming clinical trials.
Cell storage and processing may further influence the

therapeutic potential of BM MNC. The cells used in our
study had been cryopreserved prior to use, while the
majority of positive therapeutic results were obtained in
studies using freshly prepared BM MNC. Cryopreser-
vation does not seem to affect the hematopoietic poten-
tial [29]. However, it is unclear whether freezing and/or
thawing alters potential neuroprotective capabilities, which
probably depend on completely different physiological
processes. In fact, it has been shown that cryopreserva-
tion affects BM MNC physiology. Even single freezing-
thawing cycles can enhance intrinsic proteolytic activity
leading to the cleavage of apoptosis-related proteins [30],
even though the impact of this alteration (and potentially
others) on neuroprotection is unknown. Thus, thorough
research is needed to elucidate this impact.
Another limitation of our study is the transplantation

of human BM MNCs to rodents without an immuno-
suppressive treatment. The absence of beneficial effects
in aged SHRs might be simply a consequence of xeno-
graft rejection. However, recent animal stroke studies
described significantly improved recovery by BM MNCs,
albeit the transplanted cells died immediately after injec-
tion [5,31]. It is not conclusively elucidated so far, if and
how long transplanted cells must survive to facilitate
beneficial effects. In line with this, Thum and colleagues
introduced the “dying stem cell hypothesis”. They
suppose that apoptotic, rather than viable cells are
responsible for the functional restoration after stem cell
transplantation in ischemic injury via modulating the
local immune response [32]. A further decisive reason
why we desisted from immunosuppression is that the
commonly applied agents may distort the value of this
study by their neuroprotective properties [33] and by
impacting the immunological processes that ultimately
determine progress and outcome after stroke [34].
Although not investigated in the present study, several

further mechanisms by which BM MNCs might improve
recovery after ischemic stroke are age-dependent. It
has been shown that young BM MNCs promote neovas-
cularization in models of limb ischemia [35] myocardial
infarction [36] and ischemic white matter damage [37].
However, aging impairs the angiogenic capacity of BM
MNCs [38], a finding that is in agreement with an
impaired VEGF production and migratory response to
VEGF in aged BM MNCs [39]. Furthermore, it has been
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shown that vasculogenesis after BM MNC transplant-
ation is dependent on the CD34+ cell fraction [40] and
that CD34+ cells enhance post-ischemic neurogenesis
[41]. Our finding that the frequency of hematopoietic
progenitor cells is significantly reduced in senescent BM
MNCs might therefore compromise the therapeutic effi-
cacy of self-donated BM MNCs in aged patients.

Conclusions
In summary, a neuroprotective effect of young, but not
of senescent BM MNCs in an in vitro model of cerebral
ischemia was shown. Aged hypertensive rats, however,
did not benefit from acute BM MNC treatment, regard-
less of the donor’s age. Age and comorbidity should thus
be taken into consideration when studying the efficacy
of autologous cell transplantation for stroke.
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