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Abstract

Ischemic stroke is a leading cause of morbidity and mortality worldwide. Elevated plasma aldosterone levels are an
independent cardiovascular risk factor and are thought to contribute to hypertension, a major risk factor for stroke.
Evidence from both experimental and human studies supports a role for aldosterone and/or the mineralocorticoid
receptor (MR) in contributing to detrimental effects in the cerebral vasculature and to the incidence and outcome
of ischemic stroke. This article reviews the evidence, including the protective effects of MR antagonism. Specifically,
the effects of aldosterone and/or MR activation on cerebral vascular structure and on immune cells will be
reviewed. The existing evidence suggests that aldosterone and the MR contribute to cerebral vascular pathology
and to the incidence and outcome of stroke. We suggest that further research into the signaling mechanisms
underlying the effects of aldosterone and MR activation in the brain and its vasculature, especially with regard to
cell-specific actions, will provide important insight into causes and potential treatments for cerebrovascular disease
and stroke.
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Background
Elevated plasma aldosterone level is an independent car-
diovascular risk factor [1,2]. The mineralocorticoid re-
ceptor (MR) is known to be expressed in brain [3],
blood vessels [4-6] and heart [7,8] as well as its classical
site of expression in epithelial tissues such as the distal
nephron. The MR is a member of the nuclear receptor
superfamily and comprises an N-terminal domain, a cen-
tral DNA-binding domain and a hinge region linked to a
C-terminal ligand-binding domain. The MR has two
physiological ligands, aldosterone and cortisol (cortico-
sterone in rodents). It is established that in epithelial
tissues aldosterone requires the enzyme 11β-hydroxysteroid
dehydrogenase (11-βHSD2) to activate the MR, since
11-βHSD2 metabolises cortisol to cortisone [9]. Cortisol
and corticosterone circulate at 100-1000 times the
concentration of aldosterone, thus in the absence of
11-βHSD2 and under conditions of normal cortisol
levels, the MR would be occupied by cortisol [10].
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Co-localisation of 11-βHSD2 and the MR has been
demonstrated in the vasculature (i.e. in endothelial
and smooth muscle cells) [11-13], suggesting that
aldosterone interacts with the MR in the vasculature.
Patients with primary aldosteronism (characterized by

an overproduction of aldosterone) suffer stroke and car-
diovascular events more frequently [14] than essential
hypertensive patients despite having lower blood pres-
sure, suggesting that elevated plasma aldosterone
increases the risk of these events in a blood pressure-
independent manner. Ischemic stroke is caused by inter-
ruption of blood flow to the brain, and deleterious
stimuli which alter cerebral vascular structure and func-
tion will ultimately adversely influence cerebral blood
flow [15]. Therefore, in humans with underlying cardio-
vascular risk factors, detrimental vascular actions of al-
dosterone, perhaps acting via the MR, may contribute to
the pathophysiology of hypertension and stroke. The
purpose of this article is to review evidence for a contrib-
uting role of aldosterone and the MR in stroke in human
and experimental studies. Deleterious cerebral vascular
actions of aldosterone and MR activation, including ar-
terial remodeling, and recent evidence regarding effects
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on immune cells following ischemic stroke will be
discussed.

Aldosterone and the MR
Aldosterone, synthesized from cholesterol in the adrenal
cortex, targets the distal nephron of the kidney to pro-
mote sodium and water retention, and potassium excre-
tion, thus modulating electrolyte and fluid homeostasis
and blood pressure [2]. Given its well known actions on
the MR expressed in epithelial cells, aldosterone was
traditionally thought to have an exclusive role in the kid-
ney. However mounting evidence suggests that MR is
also expressed in non-epithelial tissues, including the
brain, vasculature, cardiomyocytes and immune cells
such as macrophages [16]. Indeed, both aldosterone pro-
duction and MR expression have been detected in the
brain [3], blood vessels [4-6] and heart [7,8].
The signalling actions of aldosterone may be either

genomic or non-genomic (Figure 1). Genomic actions
reflect the classic model of aldosterone action and in-
volve it binding to the MR in the cytoplasm, resulting in
MR release from chaperone proteins, dimerization of the
receptor and translocation to the nucleus where it binds
to hormone response elements on promoters leading to
activation of gene transcription [17]. By contrast, rapid,
non-genomic actions of aldosterone occur when it binds
to MR or other receptors on the cell surface [17] (e.g. G
protein coupled receptor 30 [GPR30], and possibly the
angiotensin II type 1 receptor [AT1R]) [18,19] to activate
second messenger systems.

Effects of MR antagonism on stroke outcome
MR antagonists appear to have beneficial effects in ex-
perimental models of stroke. Spironolactone and the
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Figure 1 Schematic diagram illustrating examples of genomic
and non-genomic pathways contributing to vascular
remodelling following mineralocorticoid receptor activation by
aldosterone. Figure based on text and ref [39].
more MR-selective compound, eplerenone [20] can both
markedly prevent stroke from occurring in stroke-prone
spontaneously hypertensive rats (SHRSP) maintained on
a 1% NaCl/stroke-prone diet [21,22]. In both studies,
control SHRSP showed signs of stroke and died by 16
[21] or 18 [22] weeks of age, whereas all SHRSP treated
with spironolactone, and >75% treated with eplerenone,
appeared normal and survived until 19 weeks of age be-
fore they were culled. Severe cerebrovascular and paren-
chymal lesions in brains of SHRSP were also reduced in
both spironolactone- and eplerenone-treated animals
[21,22], suggesting that MR inhibition protects against
stroke incidence through actions on both vascular and
parenchymal tissues. Additionally, MR antagonism
appears to improve outcome after experimental ischemic
stroke. Specifically, pretreatment with either spironolac-
tone [23] or eplerenone [24] reportedly reduces infarct
size following middle cerebral artery occlusion in SHRSP
[23] and in mice [24].
The aforementioned studies provide strong evidence

for a role of MR in increasing the incidence and adverse
outcomes in rodent models of stroke, although the cellu-
lar location(s) of the MR involved was unknown. How-
ever, a recent and important study by Frieler and
colleagues [25] has provided evidence that MR expressed
on myeloid cells (i.e. non-lymphocytic leukocytes) may
play an important role in post-stroke outcome. Follow-
ing cerebral ischemia, a smaller infarct volume was pro-
duced in myeloid cell MR-deficient mice compared with
control mice, consistent with MR-expressing circulating
immune cells mediating post-ischemic neuronal injury
[25]. Interestingly, the same group also provided evi-
dence that myeloid cell MR expression regulates macro-
phage polarization [26], in that deletion of myeloid MR
results in an M2 (or ‘alternate’, as opposed to M1 or
‘classical/pro-inflammatory’) macrophage polarization
[26].
Macrophage response profile appears to occur according

to the polarization state and thus depends on two main
groups of T lymphocyte-derived cytokines. For example,
Th1-type cytokines (e.g. IFNγ) induce M1 macro-
phages to display classical pro-inflammatory responses
needed for killing parasites, whereas Th2-type cyto-
kines (e.g. interleukins 4, 5, 13), which induce the M2
macrophage phenotype, are also important in the
immune response but tend to instead exert an anti-
inflammatory action [27]. In addition to myeloid
MR activation promoting a proinflammatory M1 state,
aldosterone also stimulates several M1 mediators to be gen-
erated by peritoneal thioglycolate–elicited macrophages
(e.g. TNFα, RANTES, IL-12) with the observation that
TNFα expression may be inhibited by eplerenone indicating
that the pro-inflammatory action of aldosterone was MR-
mediated [26]. In addition, a number of M1 markers



Dinh et al. Experimental & Translational Stroke Medicine 2012, 4:21 Page 3 of 7
http://www.etsmjournal.com/content/4/1/21
(IL-1β, TNFα, IL-6, MCP1, MIP1α) were elevated in the is-
chemic brain hemisphere of control mice, but these
changes were suppressed in myeloid MR-deficient mice.
Similarly, there was a marked increase in immunoreactive
Iba1+ cells in the ischemic core of control mice (indicative
of activated microglia and macrophages), which was
significantly weaker in myeloid MR-deficient mice [25].
Together, these findings suggest that MR activity may play
an important role in regulating immune cell function
during the inflammatory response following cerebral ische-
mia, thus worsening stroke outcome.

Role of aldosterone in stroke outcome
Animal studies
Whilst it is likely that much of the evidence reviewed
above implicating roles for MR activity in stroke indir-
ectly reflects actions of its main endogenous agonist, al-
dosterone, there is nevertheless additional evidence that
more directly implicates a role for this mineralocorticoid
in stroke outcome. Treatment with deoxycorticosterone
acetate (DOCA), often in combination with uninephrect-
omy and salt treatment, is commonly used to model
pathology caused by aldosterone excess. However, even
administration of DOCA alone to normal rats (i.e. in the
absence of uninephrectomy and salt treatment) can re-
sult in an increased cerebral infarct size following per-
manent middle cerebral artery (MCA) occlusion, an
effect that was associated with increases in both vessel
wall thickness and wall: lumen ratio, and decreased
lumen and outer diameters of the MCA [28]. Thus,
increased levels of mineralocorticoids may contribute to
stroke outcome, and such an effect may at least partially
result from effects on cerebral blood vessel structure.
Further evidence for a role of aldosterone in outcome

after stroke comes from studies of standard anti-
hypertensive therapies. Angiotensin converting enzyme
inhibitors (ACEIs) and angiotensin II (Ang II) receptor
blockers (ARBs) are frontline therapy for hypertension
treatment [29], however their beneficial effects in stroke
may include the suppression of aldosterone levels and be
partly blood pressure-independent [30]. For example, in
SHRSP maintained on a high salt diet, the ACEI capto-
pril [31-33] and the AT1R anatagonist losartan [33] in-
crease post-stroke survival [31,32] and restore cerebral
blood flow autoregulation [33], yet neither drug exerted
an anti-hypertensive effect. In contrast, treatment with
the diuretic, hydralazine, significantly lowered blood
pressure but was inferior to captopril in improving post-
stroke survival [31,32], consistent with the protection by
ACEIs and ARBs being blood pressure-independent. In
these studies, SHRSP treated with either captopril or
losartan had lower plasma aldosterone levels than con-
trol SHRSP. Furthermore, when plasma aldosterone
levels were restored to normal in captopril-treated
SHRSP by infusion from implanted minipumps, the
beneficial post-stroke effects of captopril were lost
[31,32], as would be expected if the protection by
captopril involved suppression of plasma aldosterone
levels. Interestingly, although yet to be directly assessed
in cerebral vessels, mesenteric arteries from SHRSP are
reported to contain significantly higher aldosterone
levels at an early age when compared to control
rats [34].
Despite experimental evidence that short-term benefits

of combination ARB and ACEI therapy may be due to
suppression of elevated aldosterone levels, findings from
clinical trials using ARBs and ACEIs indicate that, in
some patients on combined ARB/ACEI therapy, plasma
aldosterone levels can increase over the long term [35].
Thus it is likely that this phenomenon, termed ‘aldoster-
one breakthrough’, will have important clinical conse-
quences given the non-epithelial actions of aldosterone
in organs such as the brain, vasculature, heart and im-
mune system, and may therefore need to be addressed
perhaps by additional MR antagonism.

Human studies
Clinical evidence appears to be consistent with data
from experimental models indicating an important role
for elevated aldosterone levels in stroke outcome [36],
perhaps due to elevated aldosterone levels even in the
absence of hypertension. For example, the incidence of
cerebrovascular events (e.g. stroke, aneurysm, subarach-
noid hemorrhage) in patients with glucocorticoid re-
mediable aldosteronism is associated with elevated
aldosterone levels and suppressed renin activity [37].
Similarly, a large retrospective study found an associ-
ation between high aldosterone levels and the risk of
stroke and transient ischemic attack that was independ-
ent of blood pressure and other risk factors [38]. Fur-
thermore, patients with primary aldosteronism suffer
more strokes than patients with essential hypertension,
despite having lower blood pressure [39], and they have
much higher rates of stroke than age-, sex-, and blood
pressure-matched essential hypertensives [14]. Indeed, in
recently published clinical studies, relative aldosterone
excess (i.e. an increased aldosterone-to-renin ratio)
has been identified as a predictor of stroke/transient
ischemic attack, during both normal and high sodium
intake [40].

Gender effects on aldosterone levels and MR
antagonism in stroke
Human studies
Postmenopausal hypertension is largely dependent on
mineralocorticoid receptor activation and is selectively
sensitive to mineralocorticoid receptor antagonists
[41]. Furthermore, in premenopausal women, plasma
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Figure 2 Schematic diagram illustrating the potential cellular
targets and ultimate effects of mineralocorticoid receptor
activation by aldosterone on stroke outcome. ‘↑’ = increased;
‘↓’ = decreased; ‘+’ = improved; ‘−’ = worsened.
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aldosterone levels are lower than in men [42], but after
menopause there is no gender difference in plasma al-
dosterone levels [43,44].

Experimental studies
Spironolactone and eplerenone were without effect on
infarct size in female SHRSP despite a higher relative ex-
pression of MR in cerebral arteries in females than males
[45], highlighting a potential sex difference in the utility
of MR antagonists for stroke therapy. Another study
using Wistar rats found that females were less sensitive
to central MR antagonism (using the MR antagonist
RU28318) than males [46]. Thus, in contrast to findings
in human studies where MR appears to be important in
post-menopausal women, in experimental studies
females appear to be less sensitive to MR antagonism.

Complex roles of aldosterone and the MR in the
brain
Despite the evidence that aldosterone contributes to the
incidence and outcome of stroke, and that MR inhibition
may be protective under these pathological conditions,
the MR is nevertheless likely to be important in the nor-
mal physiology of the brain. The receptor is most highly
expressed in the hippocampus where it is plays a role in
behavioral, cognitive and neuroendocrine regulation
[47], and pharmacological evidence suggests it is neuro-
protective in that it can play a role in neuronal cell sur-
vival after cerebral ischemia [48]. Indeed, as cerebral
ischemia is known to increase MR expression in the
hippocampus of humans [49], rats [48] and gerbils [50],
this aspect of MR signaling could be beneficial for pro-
moting neuronal survival. Furthermore, there is evidence
that in mice with forebrain overexpression of the MR,
neuronal death following transient global cerebral ische-
mia is reduced compared to controls [47].
One mechanism whereby the MR could reduce neur-

onal cell death is through reversing the pro-apoptotic ef-
fect of the glucocorticoid receptor (GR). Activation of
the GR increases neuronal cell death in a hippocampal
culture system, and this effect was significantly reduced
in the presence of aldosterone. Although it was not
examined whether that effect was MR-dependent, the
addition of either spironolactone or RU28318 was found
to increase neuronal cell death [51]. Thus, the effects of
MR (and GR) on neuronal survival could occur via influ-
encing the expression of regulatory proteins associated
with apoptosis, and their overall effect (i.e. protective or
detrimental) may be the opposite in hippocampus and
cortex – the two locations in the brain where MR are
normally expressed. For example, in rat hippocampus,
GR activation increases the ratio of the pro-apoptotic
protein, Bax, relative to the anti-apoptotic proteins, Bcl-
2 and Bcl-xL, resulting in increased neuronal cell death,
whereas in that study the opposite effect was found after
MR activation [52]. However, MR expression occurred
after cerebral ischemia in the striatum, and spironolac-
tone treatment increased expression of neuroprotective
factors and the number of migrating neuroblasts in that
region [53].

Aldosterone, MR, and cerebral artery remodelling
Blood vessels, including cerebral arteries, can undergo
hypertrophy (i.e. increased cross-sectional area) and/or
exhibit remodeling (inward or outward changes in diam-
eter) in response to hypertension and other chronic
stimuli [54]. Several types of cellular processes and sig-
naling mechanisms may be associated with vascular re-
modeling, including fibrosis, rearrangement of vascular
smooth muscle cells, or increased responsiveness to epi-
dermal growth factor (EGF). EGF binds to the EGF re-
ceptor (EGFR) to activate cell growth and proliferation
[23]. Inward remodeling in the cerebral vasculature can
lead to a reduced lumen diameter and a less flexible ves-
sel wall, which consequently impairs the ability of the
cerebral vessel to dilate in response to ischemia [23].
Aldosterone, which is also reported to cause vascular

remodelling by increasing media thickness [55],
increases extracellular matrix proteins such as fibronec-
tin in carotid arteries, an effect that is inhibited by epler-
enone [56], suggesting cerebral vascular remodeling in
response to elevated aldosterone is MR-dependent. MR
located on vascular smooth muscle cells (VSMC) med-
iates contraction of the mesenteric artery in response to
Ang II, and increased contraction in response to KCl
and U46619 in aged mice was also dependent on MR in
VSMC. Although MR expression in VSMC had no effect
on lumen diameter or wall-to-lumen ratio, mesenteric
arteries from mice lacking VSMC MR developed less
spontaneous myogenic tone compared to controls [57].
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These findings indicate an important role for VSMC MR
in vascular reactivity. Increased expression of EGFR
mRNA has been reported in rat cerebral vessels from
SHRSP compared to control rats [23]. Spironolactone
treatment resulted in increased lumen and outer dia-
meters of the MCAs in SHRSP, as well as a reduced
wall/lumen ratio without lowering blood pressure
[58,59], suggesting that spironolactone alters cerebral
vascular structure without a change in blood pressure.

Immune cell MR as mediators of stroke damage
In addition to the concept that MR activity regulates in-
filtrating myeloid cell function during the inflammatory
response following cerebral ischemia [25], there is fur-
ther evidence for an effect of aldosterone on immune
cells [60-62]}. Aldosterone stimulated leukocyte adhe-
sion to human coronary artery endothelial cells that
was abolished by spironolactone [61]. Immune cell (ie.
monocytes/macrophages, as demonstrated by monocyte/
macrophage specific antigen MOMA-2 immunostaining)
infiltration in aorta in response to aldosterone was also
prevented by Treg adoptive transfer [62]. Aldosterone
augmented both CD8+ T cell activation by dendritic cells
(which express MR), as well as IL-17 (pro-inflammatory
cytokine) release by CD4+ T cells – effects that were
inhibited by spironolactone and eplerenone [60]. These
results were obtained from the use of bone marrow-
derived dendritic cells, nevertheless they support the
very new concept that aldosterone, perhaps acting via
MR, can modulate dendritic cell function and promote
T cell activation. Indeed, in association with their smaller
cerebral infarct volume (discussed above), myeloid cell
MR-deficient mice also have fewer activated microglia,
macrophages and pro-inflammatory mediators (IL-1β
and TNFα) in the ischemic core compared to control
mice [25], implicating immune cell-expressing MR as
important mediators of inflammation in ischemic stroke.

Conclusions and future directions
It is now established in experimental stroke studies that
activation of the MR contributes to a worse outcome fol-
lowing stroke, as well as altered structure of cerebral
blood vessels. Clinical findings also indicate that elevated
plasma levels of aldosterone may be a predictor of
increased stroke risk (Figure 2). Nevertheless, although
these data provide useful insight for the future develop-
ment of novel stroke therapies, it is noteworthy that
both aldosterone, and particularly the MR, may actually
exert protective actions in certain brain regions follow-
ing stroke (Figure 2). Therefore, in order to develop safe
and effective therapies targeting these pathways, further
research is needed to clarify the cellular and molecular
mechanisms underlying the effects of aldosterone and
MR activation in the brain and vasculature under
physiological conditions as well as during cerebrovascu-
lar disease and stroke. The use of cell-specific MR-defi-
cient mice in future studies will thus be crucial to this
area of research. There is also a need to clarify if
the clinical utility of MR antagonists is likely to be
sex-specific.
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